Python进阶之迭代器与迭代器切片教程


Posted in Python onJanuary 29, 2020

在前两篇关于 Python 切片的文章中,我们学习了切片的基础用法、高级用法、使用误区,以及自定义对象如何实现切片用法(相关链接见文末)。本文是切片系列的第三篇,主要内容是迭代器切片。

迭代器是 Python 中独特的一种高级特性,而切片也是一种高级特性,两者相结合,会产生什么样的结果呢?

1、迭代与迭代器

首先,有几个基本概念要澄清:迭代、可迭代对象、迭代器。

迭代 是一种遍历容器类型对象(例如字符串、列表、字典等等)的方式,例如,我们说迭代一个字符串“abc”,指的就是从左往右依次地、逐个地取出它的全部字符的过程。(PS:汉语中迭代一词有循环反复、层层递进的意思,但 Python 中此词要理解成单向水平线性 的,如果你不熟悉它,我建议直接将其理解为遍历。)

那么,怎么写出迭代操作的指令呢?最通用的书写语法就是 for 循环。

# for循环实现迭代过程
for char in "abc":
  print(char, end=" ")
# 输出结果:a b c

for 循环可以实现迭代的过程,但是,并非所有对象都可以用于 for 循环,例如,上例中若将字符串“abc”换成任意整型数字,则会报错: 'int' object is not iterable .

这句报错中的单词“iterable”指的是“可迭代的”,即 int 类型不是可迭代的。而字符串(string)类型是可迭代的,同样地,列表、元组、字典等类型,都是可迭代的。

那怎么判断一个对象是否可迭代呢?为什么它们是可迭代的呢?怎么让一个对象可迭代呢?

要使一个对象可迭代,就要实现可迭代协议,即要实现__iter__()魔术方法,换言之,只要实现了这个魔术方法的对象都是可迭代对象。

那怎么判断一个对象是否实现了这个方法呢?除了上述的for循环外,我知道四种方法:

# 方法1:dir()查看__iter__
dir(2)   # 没有,略
dir("abc") # 有,略

# 方法2:isinstance()判断
import collections
isinstance(2, collections.Iterable)   # False
isinstance("abc", collections.Iterable) # True

# 方法3:hasattr()判断
hasattr(2,"__iter__")   # False
hasattr("abc","__iter__") # True

# 方法4:用iter()查看是否报错
iter(2)   # 报错:'int' object is not iterable
iter("abc") # <str_iterator at 0x1e2396d8f28>

### PS:判断是否可迭代,还可以查看是否实现__getitem__,为方便描述,本文从略。

这几种方法中最值得一提的是 iter() 方法,它是 Python 的内置方法,其作用是将可迭代对象变成迭代器 。这句话可以解析出两层意思:(1)可迭代对象跟迭代器是两种东西;(2)可迭代对象能变成迭代器。

实际上,迭代器必然是可迭代对象,但可迭代对象不一定是迭代器。两者有多大的区别呢?

Python进阶之迭代器与迭代器切片教程

如上图蓝圈所示,普通可迭代对象与迭代器的最关键区别可概括为:一同两不同 ,所谓“一同”,即两者都是可迭代的(__iter__),所谓“两不同”,即可迭代对象在转化为迭代器后,它会丢失一些属性(__getitem__),同时也增加一些属性(__next__)。

首先看看增加的属性 __next__ , 它是迭代器之所以是迭代器的关键,事实上,我们正是把同时实现了 __iter__ 方法 和 __next__ 方法的对象定义为迭代器的。

有了多出来的这个属性,可迭代对象不需要借助外部的 for 循环语法,就能实现自我的迭代/遍历过程。我发明了两个概念来描述这两种遍历过程(PS:为了易理解,这里称遍历,实际也可称为迭代):它遍历 指的是通过外部语法而实现的遍历,自遍历 指的是通过自身方法实现的遍历。

借助这两个概念,我们说,可迭代对象就是能被“它遍历”的对象,而迭代器是在此基础上,还能做到“自遍历”的对象。

ob1 = "abc"
ob2 = iter("abc")
ob3 = iter("abc")

# ob1它遍历
for i in ob1:
  print(i, end = " ")  # a b c
for i in ob1:
  print(i, end = " ")  # a b c
# ob1自遍历
ob1.__next__() # 报错: 'str' object has no attribute '__next__'

# ob2它遍历
for i in ob2:
  print(i, end = " ")  # a b c  
for i in ob2:
  print(i, end = " ")  # 无输出
# ob2自遍历
ob2.__next__() # 报错:StopIteration

# ob3自遍历
ob3.__next__() # a
ob3.__next__() # b
ob3.__next__() # c
ob3.__next__() # 报错:StopIteration

通过上述例子可看出,迭代器的优势在于支持自遍历,同时,它的特点是单向非循环的,一旦完成遍历,再次调用就会报错。

对此,我想到一个比方:普通可迭代对象就像是子弹匣,它遍历就是取出子弹,在完成操作后又装回去,所以可以反复遍历(即多次调用for循环,返回相同结果);而迭代器就像是装载了子弹匣且不可拆卸的枪,进行它遍历或者自遍历都是发射子弹,这是消耗性的遍历,是无法复用的(即遍历会有尽头)。

写了这么多,稍微小结一下:迭代是一种遍历元素的方式,按照实现方式划分,有外部迭代与内部迭代两种,支持外部迭代(它遍历)的对象就是可迭代对象,而同时还支持内部迭代(自遍历)的对象就是迭代器;按照消费方式划分,可分为复用型迭代与一次性迭代,普通可迭代对象是复用型的,而迭代器是一次性的。

2、迭代器切片

前面提到了“一同两不同”,最后的不同是,普通可迭代对象在转化成迭代器的过程中会丢失一些属性,其中关键的属性是 __getitem__ 。在《Python进阶:自定义对象实现切片功能》中,我曾介绍了这个魔术方法,并用它实现了自定义对象的切片特性。

那么问题来了:为啥迭代器不继承这个属性呢?

首先,迭代器使用的是消耗型的遍历,这意味着它充满不确定性,即其长度与索引键值对是动态衰减的,所以很难 get 到它的 item ,也就不再需要 __getitem__ 属性了。其次,若强行给迭代器加上这个属性,这并不合理,正所谓强扭的瓜不甜……

由此,新的问题来了:既然会丢失这么重要的属性(还包括其它未标识的属性),为什么还要使用迭代器呢?

这个问题的答案在于,迭代器拥有不可替代的强大的有用的功能,使得 Python 要如此设计它。限于篇幅,此处不再展开,后续我会专门填坑此话题。

还没完,死缠烂打的问题来了:能否令迭代器拥有这个属性呢,即令迭代器继续支持切片呢?

hi = "欢迎关注公众号:Python猫"
it = iter(hi)

# 普通切片
hi[-7:] # Python猫

# 反例:迭代器切片
it[-7:] # 报错:'str_iterator' object is not subscriptable

迭代器因为缺少__getitem__ ,因此不能使用普通的切片语法。想要实现切片,无非两种思路:一是自己造轮子,写实现的逻辑;二是找到封装好的轮子。

Python 的 itertools 模块就是我们要找的轮子,用它提供的方法可轻松实现迭代器切片。

import itertools

# 例1:简易迭代器
s = iter("123456789")
for x in itertools.islice(s, 2, 6):
  print(x, end = " ")  # 输出:3 4 5 6
for x in itertools.islice(s, 2, 6):
  print(x, end = " ")  # 输出:9

# 例2:斐波那契数列迭代器
class Fib():
  def __init__(self):
    self.a, self.b = 1, 1

  def __iter__(self):
    while True:
      yield self.a
      self.a, self.b = self.b, self.a + self.b
f = iter(Fib())
for x in itertools.islice(f, 2, 6):
  print(x, end = " ") # 输出:2 3 5 8
for x in itertools.islice(f, 2, 6):
  print(x, end = " ") # 输出:34 55 89 144

itertools 模块的 islice() 方法将迭代器与切片完美结合,终于回答了前面的问题。然而,迭代器切片跟普通切片相比,前者有很多局限性。首先,这个方法不是“纯函数”(纯函数需遵守“相同输入得到相同输出”的原则,之前在《来自Kenneth Reitz大神的建议:避免不必要的面向对象编程》提到过);其次,它只支持正向切片,且不支持负数索引,这都是由迭代器的损耗性所决定的。

那么,我不禁要问:itertools 模块的切片方法用了什么实现逻辑呢?下方是官网提供的源码:

def islice(iterable, *args):
  # islice('ABCDEFG', 2) --> A B
  # islice('ABCDEFG', 2, 4) --> C D
  # islice('ABCDEFG', 2, None) --> C D E F G
  # islice('ABCDEFG', 0, None, 2) --> A C E G
  s = slice(*args)
  # 索引区间是[0,sys.maxsize],默认步长是1
  start, stop, step = s.start or 0, s.stop or sys.maxsize, s.step or 1
  it = iter(range(start, stop, step))
  try:
    nexti = next(it)
  except StopIteration:
    # Consume *iterable* up to the *start* position.
    for i, element in zip(range(start), iterable):
      pass
    return
  try:
    for i, element in enumerate(iterable):
      if i == nexti:
        yield element
        nexti = next(it)
  except StopIteration:
    # Consume to *stop*.
    for i, element in zip(range(i + 1, stop), iterable):
      pass

islice() 方法的索引方向是受限的,但它也提供了一种可能性:即允许你对一个无穷的(在系统支持范围内)迭代器进行切片的能力。这是迭代器切片最具想象力的用途场景。

除此之外,迭代器切片还有一个很实在的应用场景:读取文件对象中给定行数范围的数据。

在《给Python学习者的文件读写指南(含基础与进阶,建议收藏)》里,我介绍了从文件中读取内容的几种方法:readline() 比较鸡肋,不咋用;read() 适合读取内容较少的情况,或者是需要一次性处理全部内容的情况;而 readlines() 用的较多,每次迭代读取内容,既减少内存压力,又方便逐行对数据处理。

虽然 readlines() 有迭代读取的优势,但它是从头到尾逐行读取,若文件有几千行,而我们只想要读取少数特定行(例如第1000-1009行),那它还是效率太低了。考虑到文件对象天然就是迭代器 ,我们可以使用迭代器切片先行截取,然后再处理,如此效率将大大地提升。

# test.txt 文件内容
'''
猫
Python猫
python is a cat.
this is the end.
'''

from itertools import islice
with open('test.txt','r',encoding='utf-8') as f:
  print(hasattr(f, "__next__")) # 判断是否迭代器
  content = islice(f, 2, 4)
  for line in content:
    print(line.strip())
### 输出结果:
True
python is a cat.
this is the end.

3、小结

好啦,今天的学习就到这,小结一下:迭代器是一种特殊的可迭代对象,可用于它遍历与自遍历,但遍历过程是损耗型的,不具备循环复用性,因此,迭代器本身不支持切片操作;通过借助 itertools 模块,我们能实现迭代器切片,将两者的优势相结合,其主要用途在于截取大型迭代器(如无限数列、超大文件等等)的片段,实现精准的处理,从而大大地提升性能与效率。

Python 相关文章推荐
Python语法快速入门指南
Oct 12 Python
Python3实现并发检验代理池地址的方法
Sep 18 Python
python基础教程之五种数据类型详解
Jan 12 Python
Python爬虫实例_利用百度地图API批量获取城市所有的POI点
Jan 10 Python
tensorflow1.0学习之模型的保存与恢复(Saver)
Apr 23 Python
如何实现删除numpy.array中的行或列
May 08 Python
解决python爬虫中有中文的url问题
May 11 Python
pandas Dataframe行列读取的实例
Jun 08 Python
python3.5绘制随机漫步图
Aug 27 Python
python中的错误如何查看
Jul 08 Python
python实现人工蜂群算法
Sep 18 Python
python爬取某网站原图作为壁纸
Jun 02 Python
Python列表list操作相关知识小结
Jan 29 #Python
给Python学习者的文件读写指南(含基础与进阶)
Jan 29 #Python
40个你可能不知道的Python技巧附代码
Jan 29 #Python
你可能不知道的Python 技巧小结
Jan 29 #Python
Python如何通过Flask-Mail发送电子邮件
Jan 29 #Python
Python原始套接字编程实例解析
Jan 29 #Python
Python内置类型性能分析过程实例
Jan 29 #Python
You might like
php初始化对象和析构函数的简单实例
2014/03/11 PHP
php+ajax+json 详解及实例代码
2016/12/12 PHP
php快速导入大量数据的实例方法
2019/09/23 PHP
彻底搞懂JS无缝滚动代码
2007/01/03 Javascript
你必须知道的Javascript知识点之&quot;字面量和对应类型&quot;说明介绍
2013/04/23 Javascript
JavaScript数组常用操作技巧汇总
2014/11/17 Javascript
Javascript中的匿名函数与封装介绍
2015/03/15 Javascript
javascript动态设置样式style实例分析
2015/05/13 Javascript
JavaScript检测字符串中是否含有html标签实现方法
2015/07/01 Javascript
基于js实现的限制文本框只可以输入数字
2016/12/05 Javascript
理解nodejs的stream和pipe机制的原理和实现
2017/08/12 NodeJs
JS实现简单tab选项卡切换
2019/10/25 Javascript
15分钟上手vue3.0(小结)
2020/05/20 Javascript
原生JS实现微信通讯录
2020/06/18 Javascript
在Python中使用swapCase()方法转换大小写的教程
2015/05/20 Python
Python利用BeautifulSoup解析Html的方法示例
2017/07/30 Python
基于python(urlparse)模板的使用方法总结
2017/10/13 Python
使用Eclipse如何开发python脚本
2018/04/11 Python
Tensorflow使用tfrecord输入数据格式
2018/06/19 Python
利用django-suit模板添加自定义的菜单、页面及设置访问权限
2018/07/13 Python
tensorflow自定义激活函数实例
2020/02/04 Python
python deque模块简单使用代码实例
2020/03/12 Python
详解Python 最短匹配模式
2020/07/29 Python
在pycharm创建scrapy项目的实现步骤
2020/12/01 Python
Boom手表官网:瑞典手表品牌,设计你的手表
2019/03/11 全球购物
物业管理大学生个人的自我评价
2013/10/10 职场文书
中医专业职业生涯规划书范文
2014/01/04 职场文书
冰淇淋店的创业计划书
2014/02/07 职场文书
初中生评语大全
2014/04/24 职场文书
给校长的建议书500字
2014/05/15 职场文书
维稳承诺书
2015/01/20 职场文书
党校毕业个人总结
2015/02/28 职场文书
《鲸》教学反思
2016/02/23 职场文书
Win11怎么修改电源模式?Win11修改电源模式的方法
2022/04/05 数码科技
MySQL GTID复制的具体使用
2022/05/20 MySQL
微信小程序纯CSS实现无限弹幕滚动效果
2022/09/23 HTML / CSS