Python中typing模块与类型注解的使用方法


Posted in Python onAugust 05, 2019

实例引入

我们知道 Python 是一种动态语言,在声明一个变量时我们不需要显式地声明它的类型,例如下面的例子:

a = 2
print('1 + a =', 1 + a)

运行结果:

1 + a = 3

这里我们首先声明了一个变量 a,并将其赋值为了 2,然后将最后的结果打印出来,程序输出来了正确的结果。但在这个过程中,我们没有声明它到底是什么类型。

但如果这时候我们将 a 变成一个字符串类型,结果会是怎样的呢?改写如下:

a = '2'
print('1 + a =', 1 + a)

运行结果:

TypeError: unsupported operand type(s) for +: 'int' and 'str'

直接报错了,错误原因是我们进行了字符串类型的变量和数值类型变量的加和,两种数据类型不同,是无法进行相加的。

如果我们将上面的语句改写成一个方法定义:

def add(a):
 return a + 1

这里定义了一个方法,传入一个参数,然后将其加 1 并返回。

如果这时候如果用下面的方式调用,传入的参数是一个数值类型:

add(2)

则可以正常输出结果 3。但如果我们传入的参数并不是我们期望的类型,比如传入一个字符类型,那么就会同样报刚才类似的错误。

但又由于 Python 的特性,很多情况下我们并不用去声明它的类型,因此从方法定义上面来看,我们实际上是不知道一个方法的参数到底应该传入什么类型的。

这样其实就造成了很多不方便的地方,在某些情况下一些复杂的方法,如果不借助于一些额外的说明,我们是不知道参数到底是什么类型的。

因此,Python 中的类型注解就显得比较重要了。

类型注解

在 Python 3.5 中,Python PEP 484 引入了类型注解(type hints),在 Python 3.6 中,PEP 526 又进一步引入了变量注解(Variable Annotations),所以上面的代码我们改写成如下写法:

a: int = 2
print('5 + a =', 5 + a)

def add(a: int) -> int:
 return a + 1

具体的语法是可以归纳为两点:

  • 在声明变量时,变量的后面可以加一个冒号,后面再写上变量的类型,如 int、list 等等。
  • 在声明方法返回值的时候,可以在方法的后面加一个箭头,后面加上返回值的类型,如 int、list 等等。

在PEP 8 中,具体的格式是这样规定的:

  • 在声明变量类型时,变量后方紧跟一个冒号,冒号后面跟一个空格,再跟上变量的类型。
  • 在声明方法返回值的时候,箭头左边是方法定义,箭头右边是返回值的类型,箭头左右两边都要留有空格。

有了这样的声明,以后我们如果看到这个方法的定义,我们就知道传入的参数类型了,如调用 add 方法的时候,我们就知道传入的需要是一个数值类型的变量,而不是字符串类型,非常直观。

但值得注意的是,这种类型和变量注解实际上只是一种类型提示,对运行实际上是没有影响的,比如调用 add 方法的时候,我们传入的不是 int 类型,而是一个 float 类型,它也不会报错,也不会对参数进行类型转换,如:

add(1.5)

我们传入的是一个 float 类型的数值 1.5,看下运行结果:

2.5

可以看到,运行结果正常输出,而且 1.5 并没有经过强制类型转换变成 1,否则结果会变成 2。

因此,类型和变量注解只是提供了一种提示,对于运行实际上没有任何影响。

不过有了类型注解,一些 IDE 是可以识别出来并提示的,比如 PyCharm 就可以识别出来在调用某个方法的时候参数类型不一致,会提示 WARNING。

比如上面的调用,如果在 PyCharm 中,就会有如下提示内容:

Expected type 'int', got 'float' instead
This inspection detects type errors in function call expressions. Due to dynamic dispatch and duck typing, this is possible in a limited but useful number of cases. Types of function parameters can be specified in docstrings or in Python 3 function annotations.

另外也有一些库是支持类型检查的,比如 mypy,安装之后,利用 mypy 即可检查出 Python 脚本中不符合类型注解的调用情况。

上面只是用一个简单的 int 类型做了实例,下面我们再看下一些相对复杂的数据结构,例如列表、元组、字典等类型怎么样来声明。

可想而知了,列表用 list 表示,元组用 tuple 表示,字典用 dict 来表示,那么很自然地,在声明的时候我们就很自然地写成这样了:

names: list = ['Germey', 'Guido']
version: tuple = (3, 7, 4)
operations: dict = {'show': False, 'sort': True}

这么看上去没有问题,确实声明为了对应的类型,但实际上并不能反映整个列表、元组的结构,比如我们只通过类型注解是不知道 names 里面的元素是什么类型的,只知道 names 是一个列表 list 类型,实际上里面都是字符串 str 类型。我们也不知道 version 这个元组的每一个元素是什么类型的,实际上是 int 类型。但这些信息我们都无从得知。因此说,仅仅凭借 list、tuple 这样的声明是非常“弱”的,我们需要一种更强的类型声明。

这时候我们就需要借助于 typing 模块了,它提供了非常“强“的类型支持,比如 List[str]、Tuple[int, int, int] 则可以表示由 str 类型的元素组成的列表和由 int 类型的元素组成的长度为 3 的元组。所以上文的声明写法可以改写成下面的样子:

from typing import List, Tuple, Dict

names: List[str] = ['Germey', 'Guido']
version: Tuple[int, int, int] = (3, 7, 4)
operations: Dict[str, bool] = {'show': False, 'sort': True}

这样一来,变量的类型便可以非常直观地体现出来了。

目前 typing 模块也已经被加入到 Python 标准库中,不需要安装第三方模块,我们就可以直接使用了。

typing

下面我们再来详细看下 typing 模块的具体用法,这里主要会介绍一些常用的注解类型,如 List、Tuple、Dict、Sequence 等等,了解了每个类型的具体使用方法,我们可以得心应手的对任何变量进行声明了。

在引入的时候就直接通过 typing 模块引入就好了,例如:

from typing import List, Tuple

List

List、列表,是 list 的泛型,基本等同于 list,其后紧跟一个方括号,里面代表了构成这个列表的元素类型,如由数字构成的列表可以声明为:

var: List[int or float] = [2, 3.5]

另外还可以嵌套声明都是可以的:

var: List[List[int]] = [[1, 2], [2, 3]]

Tuple、NamedTuple

Tuple、元组,是 tuple 的泛型,其后紧跟一个方括号,方括号中按照顺序声明了构成本元组的元素类型,如 Tuple[X, Y] 代表了构成元组的第一个元素是 X 类型,第二个元素是 Y 类型。

比如想声明一个元组,分别代表姓名、年龄、身高,三个数据类型分别为 str、int、float,那么可以这么声明:

person: Tuple[str, int, float] = ('Mike', 22, 1.75)

同样地也可以使用类型嵌套。

NamedTuple,是 collections.namedtuple 的泛型,实际上就和 namedtuple 用法完全一致,但个人其实并不推荐使用 NamedTuple,推荐使用 attrs 这个库来声明一些具有表征意义的类。

Dict、Mapping、MutableMapping

Dict、字典,是 dict 的泛型;Mapping,映射,是 collections.abc.Mapping 的泛型。根据官方文档,Dict 推荐用于注解返回类型,Mapping 推荐用于注解参数。它们的使用方法都是一样的,其后跟一个中括号,中括号内分别声明键名、键值的类型,如:

def size(rect: Mapping[str, int]) -> Dict[str, int]:
 return {'width': rect['width'] + 100, 'height': rect['width'] + 100}

这里将 Dict 用作了返回值类型注解,将 Mapping 用作了参数类型注解。

MutableMapping 则是 Mapping 对象的子类,在很多库中也经常用 MutableMapping 来代替 Mapping。

Set、AbstractSet

Set、集合,是 set 的泛型;AbstractSet、是 collections.abc.Set 的泛型。根据官方文档,Set 推荐用于注解返回类型,AbstractSet 用于注解参数。它们的使用方法都是一样的,其后跟一个中括号,里面声明集合中元素的类型,如:

def describe(s: AbstractSet[int]) -> Set[int]:
 return set(s)

这里将 Set 用作了返回值类型注解,将 AbstractSet 用作了参数类型注解。

Sequence

Sequence,是 collections.abc.Sequence 的泛型,在某些情况下,我们可能并不需要严格区分一个变量或参数到底是列表 list 类型还是元组 tuple 类型,我们可以使用一个更为泛化的类型,叫做 Sequence,其用法类似于 List,如:

def square(elements: Sequence[float]) -> List[float]:
 return [x ** 2 for x in elements]

NoReturn

NoReturn,当一个方法没有返回结果时,为了注解它的返回类型,我们可以将其注解为 NoReturn,例如:

def hello() -> NoReturn:
 print('hello')

Any

Any,是一种特殊的类型,它可以代表所有类型,静态类型检查器的所有类型都与 Any 类型兼容,所有的无参数类型注解和返回类型注解的都会默认使用 Any 类型,也就是说,下面两个方法的声明是完全等价的:

def add(a):
 return a + 1

def add(a: Any) -> Any:
 return a + 1

原理类似于 object,所有的类型都是 object 的子类。但如果我们将参数声明为 object 类型,静态参数类型检查便会抛出错误,而 Any 则不会,具体可以参考官方文档的说明:https://docs.python.org/zh-cn/3/library/typing.html?highlight=typing#the-any-type。

TypeVar

TypeVar,我们可以借助它来自定义兼容特定类型的变量,比如有的变量声明为 int、float、None 都是符合要求的,实际就是代表任意的数字或者空内容都可以,其他的类型则不可以,比如列表 list、字典 dict 等等,像这样的情况,我们可以使用 TypeVar 来表示。

例如一个人的身高,便可以使用 int 或 float 或 None 来表示,但不能用 dict 来表示,所以可以这么声明:

height = 1.75
Height = TypeVar('Height', int, float, None)
def get_height() -> Height:
 return height

这里我们使用 TypeVar 声明了一个 Height 类型,然后将其用于注解方法的返回结果。

NewType

NewType,我们可以借助于它来声明一些具有特殊含义的类型,例如像 Tuple 的例子一样,我们需要将它表示为 Person,即一个人的含义,但但从表面上声明为 Tuple 并不直观,所以我们可以使用 NewType 为其声明一个类型,如:

Person = NewType('Person', Tuple[str, int, float])
person = Person(('Mike', 22, 1.75))

这里实际上 person 就是一个 tuple 类型,我们可以对其像 tuple 一样正常操作。

Callable

Callable,可调用类型,它通常用来注解一个方法,比如我们刚才声明了一个 add 方法,它就是一个 Callable 类型:

print(Callable, type(add), isinstance(add, Callable))

运行结果:

typing.Callable <class 'function'> True

在这里虽然二者 add 利用 type 方法得到的结果是 function,但实际上利用 isinstance 方法判断确实是 True。

Callable 在声明的时候需要使用 Callable[[Arg1Type, Arg2Type, ...], ReturnType] 这样的类型注解,将参数类型和返回值类型都要注解出来,例如:

def date(year: int, month: int, day: int) -> str:
 return f'{year}-{month}-{day}'

def get_date_fn() -> Callable[[int, int, int], str]:
 return date

这里首先声明了一个方法 date,接收三个 int 参数,返回一个 str 结果,get_date_fn 方法返回了这个方法本身,它的返回值类型就可以标记为 Callable,中括号内分别标记了返回的方法的参数类型和返回值类型。

Union

Union,联合类型,Union[X, Y] 代表要么是 X 类型,要么是 Y 类型。

联合类型的联合类型等价于展平后的类型:

Union[Union[int, str], float] == Union[int, str, float]

仅有一个参数的联合类型会坍缩成参数自身,比如:

Union[int] == int

多余的参数会被跳过,比如:

Union[int, str, int] == Union[int, str]

在比较联合类型的时候,参数顺序会被忽略,比如:

Union[int, str] == Union[str, int]

这个在一些方法参数声明的时候比较有用,比如一个方法,要么传一个字符串表示的方法名,要么直接把方法传过来:

def process(fn: Union[str, Callable]):
 if isinstance(fn, str):
  # str2fn and process
  pass
 elif isinstance(fn, Callable):
  fn()

这样的声明在一些类库方法定义的时候十分常见。

Optional

Optional,意思是说这个参数可以为空或已经声明的类型,即 Optional[X] 等价于 Union[X, None]。

但值得注意的是,这个并不等价于可选参数,当它作为参数类型注解的时候,不代表这个参数可以不传递了,而是说这个参数可以传为 None。

如当一个方法执行结果,如果执行完毕就不返回错误信息, 如果发生问题就返回错误信息,则可以这么声明:

def judge(result: bool) -> Optional[str]:
 if result: return 'Error Occurred'

Generator

如果想代表一个生成器类型,可以使用 Generator,它的声明比较特殊,其后的中括号紧跟着三个参数,分别代表 YieldType、SendType、ReturnType,如:

def echo_round() -> Generator[int, float, str]:
 sent = yield 0
 while sent >= 0:
  sent = yield round(sent)
 return 'Done'

在这里 yield 关键字后面紧跟的变量的类型就是 YieldType,yield 返回的结果的类型就是 SendType,最后生成器 return 的内容就是 ReturnType。

当然很多情况下,生成器往往只需要 yield 内容就够了,我们是不需要 SendType 和 ReturnType 的,可以将其设置为空,如:

def infinite_stream(start: int) -> Generator[int, None, None]:
 while True:
  yield start
  start += 1

案例实战

接下来让我们看一个实际的项目,看看经常用到的类型一般是怎么使用的。

这里我们看的库是 requests-html,是由 Kenneth Reitz 所开发的,其 GitHub 地址为:https://github.com/psf/requests-html,下面我们主要看看它的源代码中一些类型是如何声明的。

这个库的源代码其实就一个文件,那就是 https://github.com/psf/requests-html/blob/master/requests_html.py,我们看一下它里面的一些 typing 的定义和方法定义。

首先 Typing 的定义部分如下:

from typing import Set, Union, List, MutableMapping, Optional

_Find = Union[List['Element'], 'Element']
_XPath = Union[List[str], List['Element'], str, 'Element']
_Result = Union[List['Result'], 'Result']
_HTML = Union[str, bytes]
_BaseHTML = str
_UserAgent = str
_DefaultEncoding = str
_URL = str
_RawHTML = bytes
_Encoding = str
_LXML = HtmlElement
_Text = str
_Search = Result
_Containing = Union[str, List[str]]
_Links = Set[str]
_Attrs = MutableMapping
_Next = Union['HTML', List[str]]
_NextSymbol = List[str]

这里可以看到主要用到的类型有 Set、Union、List、MutableMapping、Optional,这些在上文都已经做了解释,另外这里使用了多次 Union 来声明了一些新的类型,如 _Find 则要么是是 Element 对象的列表,要么是单个 Element 对象,_Result 则要么是 Result 对象的列表,要么是单个 Result 对象。另外 _Attrs 其实就是字典类型,这里用 MutableMapping 来表示了,没有用 Dict,也没有用 Mapping。

接下来再看一个 Element 类的声明:

class Element(BaseParser):
 """An element of HTML.
 :param element: The element from which to base the parsing upon.
 :param url: The URL from which the HTML originated, used for ``absolute_links``.
 :param default_encoding: Which encoding to default to.
 """

 __slots__ = [
  'element', 'url', 'skip_anchors', 'default_encoding', '_encoding',
  '_html', '_lxml', '_pq', '_attrs', 'session'
 ]

 def __init__(self, *, element, url: _URL, default_encoding: _DefaultEncoding = None) -> None:
  super(Element, self).__init__(element=element, url=url, default_encoding=default_encoding)
  self.element = element
  self.tag = element.tag
  self.lineno = element.sourceline
  self._attrs = None

 def __repr__(self) -> str:
  attrs = ['{}={}'.format(attr, repr(self.attrs[attr])) for attr in self.attrs]
  return "<Element {} {}>".format(repr(self.element.tag), ' '.join(attrs))

 @property
 def attrs(self) -> _Attrs:
  """Returns a dictionary of the attributes of the :class:`Element <Element>`
  (`learn more <https://www.w3schools.com/tags/ref_attributes.asp>`_).
  """
  if self._attrs is None:
   self._attrs = {k: v for k, v in self.element.items()}

   # Split class and rel up, as there are ussually many of them:
   for attr in ['class', 'rel']:
    if attr in self._attrs:
     self._attrs[attr] = tuple(self._attrs[attr].split())

  return self._attrs

这里 __init__ 方法接收非常多的参数,同时使用 _URL 、_DefaultEncoding 进行了参数类型注解,另外 attrs 方法使用了 _Attrs 进行了返回结果类型注解。

整体看下来,每个参数的类型、返回值都进行了清晰地注解,代码可读性大大提高。

以上便是类型注解和 typing 模块的详细介绍。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对三水点靠木的支持。

Python 相关文章推荐
python中文编码问题小结
Sep 28 Python
使用python爬虫实现网络股票信息爬取的demo
Jan 05 Python
详解python多线程、锁、event事件机制的简单使用
Apr 27 Python
django的聚合函数和aggregate、annotate方法使用详解
Jul 23 Python
vscode 配置 python3开发环境的方法
Sep 19 Python
Python求正态分布曲线下面积实例
Nov 20 Python
python3 图片 4通道转成3通道 1通道转成3通道 图片压缩实例
Dec 03 Python
keras中epoch,batch,loss,val_loss用法说明
Jul 02 Python
python写文件时覆盖原来的实例方法
Jul 22 Python
Python操作word文档插入图片和表格的实例演示
Oct 25 Python
基于python模拟bfs和dfs代码实例
Nov 19 Python
python实现xml转json文件的示例代码
Dec 30 Python
Python及Pycharm安装方法图文教程
Aug 05 #Python
python redis连接 有序集合去重的代码
Aug 04 #Python
Django中URL的参数传递的实现
Aug 04 #Python
Python 操作 ElasticSearch的完整代码
Aug 04 #Python
python elasticsearch从创建索引到写入数据的全过程
Aug 04 #Python
elasticsearch python 查询的两种方法
Aug 04 #Python
python Elasticsearch索引建立和数据的上传详解
Aug 04 #Python
You might like
php读取javascript设置的cookies的代码
2010/04/12 PHP
PHP实现手机号码中间四位用星号(*)隐藏的自定义函数分享
2014/09/27 PHP
PHP的curl函数的用法总结
2019/02/14 PHP
jQuery插件开发基础简单介绍
2013/01/07 Javascript
用js实现trim()的解决办法
2013/04/16 Javascript
js采用map取到id集合组并且实现点击一行选中一行
2013/12/16 Javascript
删除节点的jquery代码
2014/01/13 Javascript
JavaScript中的ubound函数使用实例
2014/11/04 Javascript
js显示文本框提示文字的方法
2015/05/07 Javascript
javascript单例模式的简单实现方法
2015/07/25 Javascript
借助FileReader实现将文件编码为Base64后通过AJAX上传
2015/12/24 Javascript
详解Angularjs在控制器(controller.js)中使用过滤器($filter)格式化日期/时间实例
2017/02/17 Javascript
关于express与koa的使用对比详解
2018/01/25 Javascript
微信小程序搭建(mpvue+mpvue-weui+fly.js)的详细步骤
2018/09/18 Javascript
vue.js 解决v-model让select默认选中不生效的问题
2020/07/28 Javascript
使用python提取html文件中的特定数据的实现代码
2013/03/24 Python
Python实现豆瓣图片下载的方法
2015/05/25 Python
python 列表,数组和矩阵sum的用法及区别介绍
2018/06/28 Python
Python 删除整个文本中的空格,并实现按行显示
2018/07/24 Python
Python3.6+selenium2.53.6自动化测试_读取excel文件的方法
2019/09/06 Python
python 实现按对象传值
2019/12/26 Python
Python捕获异常堆栈信息的几种方法(小结)
2020/05/18 Python
Python爬虫爬取有道实现翻译功能
2020/11/27 Python
viagogo法国票务平台:演唱会、体育比赛、戏剧门票
2017/03/27 全球购物
信息技术专业大学生个人的自我评价
2013/10/05 职场文书
总经理驾驶员岗位职责
2013/12/04 职场文书
授权委托书范本
2014/04/03 职场文书
银行内勤岗位职责
2014/04/09 职场文书
完美的中文自荐信
2014/05/24 职场文书
2014教师研修学习体会
2014/07/08 职场文书
高中毕业典礼演讲稿
2014/09/09 职场文书
党员干部对十八届四中全会的期盼
2014/10/17 职场文书
2014年采购员工作总结
2014/11/18 职场文书
新闻稿件写作范文
2015/07/18 职场文书
教你利用Nginx 服务搭建子域环境提升二维地图加载性能的步骤
2021/09/25 Servers
Python实现对齐打印 format函数的用法
2022/04/28 Python