浅谈Python 递归算法指归


Posted in Python onAugust 22, 2019

1. 递归概述

递归( recursion)是一种编程技巧,某些情况下,甚至是无可替代的技巧。递归可以大幅简化代码,看起来非常简洁,但递归设计却非常抽象,不容易掌握。通常,我们都是自上而下的思考问题, 递归则是自下而上的解决问题——这就是递归看起来不够直观的原因。那么,究竟什么是递归呢?让我们先从生活中找一个栗子。

我们都有在黑暗的放映厅里找座位的经验:问问前排的朋友坐的是第几排,加上一,就是自己当前所处位置的排号。如果前排的朋友不知道自己是第几排,他可以用同样的方法得到自己的排号,然后再告诉你。如果前排的前排的朋友也不知道自己是第几排,他就如法炮制。这样的推导,不会无限制地进行下去,因为问到第一排的时候,坐在第一排的朋友一定会直接给出答案的。这就是递归算法在生活中的应用实例。

关于递归,不太严谨的定义是“一个函数在运行时直接或间接地调用了自身”。严谨一点的话,一个递归函数必须满足下面两个条件:

  1. 至少有一个明确的递归结束条件,我们称之为递归出口,也有人喜欢把该条件叫做递归基。
  2. 有向递归出口方向靠近的直接或间接的自身调用(也被称作递归调用)。

递归虽然晦涩,亦有规律可循。掌握了基本的递归理论,才有可能将其应用于复杂的算法设计中。

2. 线性递归

我们先从最经典的两个递归算法开始——阶乘(factorial)和斐波那契数列(Fibonacci sequence)。几乎所有讨论递归算法的话题,都是从从它们开始的。阶乘的概念比较简单,唯一需要说明的是,0的阶乘是1而非0。为此,我专门请教了我的女儿,她是数学专业的学生。斐波那契数列,又称黄金分割数列,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列是这样定义的:

F(0)=1,F(1)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N,N为正整数集)

阶乘和斐波那契数列的递归算法如下:

def factorial(n):
 if n == 0: # 递归出口
 return 1
 return n*factorial(n-1) # 向递归出口方向靠近的自身调用

def fibonacci(n):
 if n < 2: # 递归出口
 return 1
 return fibonacci(n-1) + fibonacci(n-2) # 向递归出口方向靠近的自身调用

这两个函数的结构都非常简单,递归出口和自身调用清晰明了,但二者有一个显著的区别:阶乘函数中,只用一次自身调用,而斐波那契函数则有两次自身调用。

阶乘递归函数每一层的递归对自身的调用只有一次,因此每一层次上至多只有一个实例,且它们构成一个线性的次序关系。此类递归模式称作“线性递归”,这是递归最基本形式。非线性递归(比如斐波那契递归函数)在每一层上都会产生两个实例,时间复杂度为浅谈Python 递归算法指归,极易导致堆栈溢出。

其实,用循环的方法同样可以简洁地写出上面两个函数。的确,很多情况下,递归能够解决的问题,循环也可以做到。但是,更多的情况下,循环是无法取代递归的。因此,深入研究递归理论是非常有必要的。

3. 尾递归

接下来,我们将上面的阶乘递归函数改造一下,仍然用递归的方式实现。为了便于比较,我们把两种算法放在一起。

def factorial_A(n):
 if n == 0: # 递归出口
 return 1
 return n*factorial_A(n-1) # 向递归出口方向靠近的自身调用

def factorial_B(n, k=1):
 if n == 0: # 递归出口
 return k
 k *= n
 n -= 1
 return factorial_B(n,k) # 向递归出口方向靠近的自身调用

比较 factorial_A() 和 factorial_B() 的写法,就会发现很有意思的问题。factorial_A() 的自身调用属于表达式的一部分,这意味着自身调用不是函数的最后一步,而是拿到自身调用的结果后,需要再做一次乘法运算;factorial_B() 的自身调用则是函数的最后一步。像 factorial_B() 函数这样,当自身调用是整个函数体中最后执行的语句,且它的返回值不属于表达式的一部分时,这个递归调用就是尾递归(Tail Recursion)。尾递归函数的特点是在回归过程中不用做任何操作,这个特性很重要,因为大多数现代的编译器会利用这种特点自动生成优化的代码。

分别使用 factorial_A() 和 factorial_B() 计算5的阶乘,下图所示的计算过程,清晰展示了尾递归的优势:不用花费大量的栈空间来保存上次递归中的参数、局部变量等,这是因为上次递归操作结束后,已经将之前的数据计算出来,传递给当前的递归函数,这样上次递归中的局部变量和参数等就会被删除,释放空间,从而不会造成栈溢出。

factorial_A(5)
5 * factorial_A(4)
5 * 4 * factorial_A(3)
5 * 4 * 3 * factorial_A(2)
5 * 4 * 3 * 2 * factorial_A(1)
5 * 4 * 3 * 2 * 1 * factorial_A(0)
5 * 4 * 3 * 2 * 1
5 * 4 * 3 * 2
5 * 4 * 6
5 * 24
120

factorial_B(5, k=1)
factorial_B(4, k=5)
factorial_B(3, k=20)
factorial_B(2, k=60)
factorial_B(1, k=120)
factorial_B(0, k=120)
120

尾递归虽然有低耗高效的优势,但这一类递归一般都可转化为循环语句。

4. 单向递归

前文中两个递归函数,不管是阶乘还是斐波那契数列,递归总是向着递归出口方向进行,没有分支,没有反复,这样的递归,我们称之为单向递归。在文件递归遍历等应用场合,搜索完一个文件夹,通常要返回至父级目录,继续搜索其他兄弟文件夹,这个过程就不是单向的,而是有分叉的、带回溯的。通常复杂递归都不是单向的,算法设计起来就比较困难。

import os

def ergodic(folder):
 for root, dirs, files in os.walk(folder):
 for dir_name in dirs:
  print(os.path.join(root, dir_name))
 for file_name in files:
  print(os.path.join(root, file_name))

上面是借助于 os 模块的 walk() 实现的基于循环的文件遍历方法。虽然是循环结构,如果不熟悉 walk() 的话,这个函数看起来还是很不直观。我更喜欢下面的递归遍历方法。

import os

def ergodic(folder):
 for item in os.listdir(folder):
 obj = os.path.join(folder, item)
 print(obj)
 if os.path.isdir(obj):
  ergodic(obj)

5. 深度优先与广度优先

遍历文件通常有两种策略:深度优先搜索 DFS(depth-first search) 和广度优先搜索BFS(breadth-first search) 。顾名思义,深度优先就是优先处理本级文件夹中的子文件夹,递归向纵深发展;广度优先就是优先处理本级文件夹中的文件,递归向水平方向发展。

import os

def ergodic_DFS(folder):
 """基于深度优先的文件遍历"""
 
 dirs, files = list(), list()
 for item in os.listdir(folder):
 if os.path.isdir(os.path.join(folder, item)):
  dirs.append(item)
 else:
  files.append(item)
 
 for dir_name in dirs:
 ergodic(os.path.join(folder, dir_name))
 for file_name in files
 print(os.path.join(folder, file_name))

def ergodic_BFS(folder):
 """基于广度优先的文件遍历"""
 
 dirs, files = list(), list()
 for item in os.listdir(folder):
 if os.path.isdir(os.path.join(folder, item)):
  dirs.append(item)
 else:
  files.append(item)
 
 for file_name in files
 print(os.path.join(folder, file_name))
 for dir_name in dirs:
 ergodic(os.path.join(folder, dir_name))

 以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python实现查询IP地址所在地
Mar 29 Python
Python中类型关系和继承关系实例详解
May 25 Python
基础的十进制按位运算总结与在Python中的计算示例
Jun 28 Python
python下如何查询CS反恐精英的服务器信息
Jan 17 Python
K-近邻算法的python实现代码分享
Dec 09 Python
Python常见工厂函数用法示例
Mar 21 Python
树莓派使用python-librtmp实现rtmp推流h264的方法
Jul 22 Python
浅谈python3中input输入的使用
Aug 02 Python
详解解决Python memory error的问题(四种解决方案)
Aug 08 Python
numpy求平均值的维度设定的例子
Aug 24 Python
tensorflow实现在函数中用tf.Print输出中间值
Jan 21 Python
最新PyCharm从安装到PyCharm永久激活再到PyCharm官方中文汉化详细教程
Nov 17 Python
python求加权平均值的实例(附纯python写法)
Aug 22 #Python
python求平均数、方差、中位数的例子
Aug 22 #Python
python2和python3实现在图片上加汉字的方法
Aug 22 #Python
Python使用微信itchat接口实现查看自己微信的信息功能详解
Aug 22 #Python
简单了解python 生成器 列表推导式 生成器表达式
Aug 22 #Python
Python实现的微信红包提醒功能示例
Aug 22 #Python
Python PIL图片添加字体的例子
Aug 22 #Python
You might like
PHP输入流php://input介绍
2012/09/18 PHP
浅谈PHP中单引号和双引号到底有啥区别呢?
2015/03/04 PHP
PHP的Socket网络编程入门指引
2015/08/11 PHP
php 微信开发获取用户信息如何实现
2016/12/13 PHP
JS实现切换标签页效果实例代码
2013/11/01 Javascript
调用DOM对象的focus使文本框获得焦点
2014/02/19 Javascript
javascript中with()方法的语法格式及使用
2014/08/04 Javascript
封装了jQuery的Ajax请求全局配置
2015/02/05 Javascript
详解JavaScript中setSeconds()方法的使用
2015/06/11 Javascript
浅谈html转义及防止javascript注入攻击的方法
2016/12/04 Javascript
原生javascript移动端滑动banner效果
2017/03/10 Javascript
微信小程序 ES6Promise.all批量上传文件实现代码
2017/04/14 Javascript
jQueryUI Sortable 应用Demo(分享)
2017/09/07 jQuery
Angular6中使用Swiper的方法示例
2018/07/09 Javascript
Vue.js图片预览插件使用详解
2018/08/27 Javascript
JS实现点击拉拽轮播图pc端移动端适配
2018/09/05 Javascript
nodejs中express入门和基础知识点学习
2018/09/13 NodeJs
Vue绑定内联样式问题
2018/10/17 Javascript
vue父组件触发事件改变子组件的值的方法实例详解
2019/05/07 Javascript
用jQuery实现抽奖程序
2020/04/12 jQuery
[04:02]2014DOTA2国际邀请赛 BBC每日综述中国战队将再度登顶
2014/07/21 DOTA
[01:33:25]DOTA2-DPC中国联赛 正赛 Elephant vs IG BO3 第一场 1月24日
2021/03/11 DOTA
实例讲解python中的协程
2018/10/08 Python
pycharm在调试python时执行其他语句的方法
2018/11/29 Python
selenium+python截图不成功的解决方法
2019/01/30 Python
使用Python和百度语音识别生成视频字幕的实现
2020/04/09 Python
如何使用Python调整图像大小
2020/09/26 Python
Python tkinter之ComboBox(下拉框)的使用简介
2021/02/05 Python
css3动画效果小结(推荐)
2016/07/25 HTML / CSS
html5实现输入框fixed定位在屏幕最底部兼容性
2020/07/03 HTML / CSS
关于美容院的活动方案
2014/08/14 职场文书
小学优秀班主任材料
2014/12/17 职场文书
2015年新学期寄语
2015/02/26 职场文书
php 解析非标准json、非规范json
2021/04/01 PHP
MySQL的安装与配置详细教程
2021/06/26 MySQL
【海涛教你打DOTA】死灵飞龙第一视角解说
2022/04/01 DOTA