在Pandas中DataFrame数据合并,连接(concat,merge,join)的实例


Posted in Python onJanuary 29, 2019

最近在工作中,遇到了数据合并、连接的问题,故整理如下,供需要者参考~

一、concat:沿着一条轴,将多个对象堆叠到一起

concat方法相当于数据库中的全连接(union all),它不仅可以指定连接的方式(outer join或inner join)还可以指定按照某个轴进行连接。与数据库不同的是,它不会去重,但是可以使用drop_duplicates方法达到去重的效果。

concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, 
    keys=None, levels=None, names=None, verify_integrity=False, copy=True):

pd.concat()只是单纯的把两个表拼接在一起,参数axis是关键,它用于指定是行还是列,axis默认是0。

当axis=0时,pd.concat([obj1, obj2])的效果与obj1.append(obj2)是相同的;当axis=1时,pd.concat([obj1, obj2], axis=1)的效果与pd.merge(obj1, obj2, left_index=True, right_index=True, how='outer')是相同的。

merge方法的介绍请参看下文。

参数介绍:

objs:需要连接的对象集合,一般是列表或字典;

axis:连接轴向;

join:参数为‘outer'或‘inner';

join_axes=[]:指定自定义的索引;

keys=[]:创建层次化索引;

ignore_index=True:重建索引

举例:

df1=DataFrame(np.random.randn(3,4),columns=['a','b','c','d']) 
 
df2=DataFrame(np.random.randn(2,3),columns=['b','d','a']) 
 
pd.concat([df1,df2]) 
 
     a     b     c     d 
0 -0.848557 -1.163877 -0.306148 -1.163944 
1 1.358759 1.159369 -0.532110 2.183934 
2 0.532117 0.788350 0.703752 -2.620643 
0 -0.316156 -0.707832    NaN -0.416589 
1 0.406830 1.345932    NaN -1.874817 
 
pd.concat([df1,df2],ignore_index=True) 
 
     a     b     c     d 
0 -0.848557 -1.163877 -0.306148 -1.163944 
1 1.358759 1.159369 -0.532110 2.183934 
2 0.532117 0.788350 0.703752 -2.620643 
3 -0.316156 -0.707832    NaN -0.416589 
4 0.406830 1.345932    NaN -1.874817

二、merge:通过键拼接列

类似于关系型数据库的连接方式,可以根据一个或多个键将不同的DatFrame连接起来。该函数的典型应用场景是,针对同一个主键存在两张不同字段的表,根据主键整合到一张表里面。

merge(left, right, how='inner', on=None, left_on=None, right_on=None, 
left_index=False, right_index=False, sort=True, 
suffixes=('_x', '_y'), copy=True, indicator=False)

参数介绍:

left和right:两个不同的DataFrame;

how:连接方式,有inner、left、right、outer,默认为inner;

on:指的是用于连接的列索引名称,必须存在于左右两个DataFrame中,如果没有指定且其他参数也没有指定,则以两个DataFrame列名交集作为连接键;

left_on:左侧DataFrame中用于连接键的列名,这个参数左右列名不同但代表的含义相同时非常的有用;

right_on:右侧DataFrame中用于连接键的列名;

left_index:使用左侧DataFrame中的行索引作为连接键;

right_index:使用右侧DataFrame中的行索引作为连接键;

sort:默认为True,将合并的数据进行排序,设置为False可以提高性能;

suffixes:字符串值组成的元组,用于指定当左右DataFrame存在相同列名时在列名后面附加的后缀名称,默认为('_x', '_y');

copy:默认为True,总是将数据复制到数据结构中,设置为False可以提高性能;

indicator:显示合并数据中数据的来源情况

举例:

# 1.默认以重叠的列名当做连接键。
df1=DataFrame({'key':['a','b','b'],'data1':range(3)})  
df2=DataFrame({'key':['a','b','c'],'data2':range(3)})  
pd.merge(df1,df2)  #没有指定连接键,默认用重叠列名,没有指定连接方式 
 
  data1 key data2 
0   0  a   0 
1   1  b   1 
2   2  b   1 
 
# 2.默认做inner连接(取key的交集),连接方式还有(left,right,outer),制定连接方式加参数:how=''
pd.merge(df2,df1) 
 
  data2 key data1 
0   0  a   0 
1   1  b   1 
2   1  b   2          #默认内连接,可以看见c没有连接上。 
 
pd.merge(df2,df1,how='left')  #通过how,指定连接方式 
 
  data2 key data1 
0   0  a   0 
1   1  b   1 
2   1  b   2 
3   2  c  NaN 
 
# 3.多键连接时将连接键组成列表传入,例:pd.merge(df1,df2,on=['key1','key2']
right=DataFrame({'key1':['foo','foo','bar','bar'], 
     'key2':['one','one','one','two'], 
     'lval':[4,5,6,7]}) 
left=DataFrame({'key1':['foo','foo','bar'], 
     'key2':['one','two','one'], 
     'lval':[1,2,3]}) 
right=DataFrame({'key1':['foo','foo','bar','bar'], 
     'key2':['one','one','one','two'], 
     'lval':[4,5,6,7]}) 
pd.merge(left,right,on=['key1','key2'],how='outer') #传出数组 
  
 key1 key2 lval_x lval_y 
0 foo one    1    4 
1 foo one    1    5 
2 foo two    2   NaN 
3 bar one    3    6 
4 bar two   NaN    7 
 
# 4.如果两个对象的列名不同,可以分别指定,例:pd.merge(df1,df2,left_on='lkey',right_on='rkey')
df3=DataFrame({'key3':['foo','foo','bar','bar'], #将上面的right的key 改了名字 
     'key4':['one','one','one','two'], 
     'lval':[4,5,6,7]}) 
pd.merge(left,df3,left_on='key1',right_on='key3') #键名不同的连接 
  
 key1 key2 lval_x key3 key4 lval_y 
0 foo one    1 foo one    4 
1 foo one    1 foo one    5 
2 foo two    2 foo one    4 
3 foo two    2 foo one    5 
4 bar one    3 bar one    6 
5 bar one    3 bar two    7

三、join:主要用于索引上的合并

join(self, other, on=None, how='left', lsuffix='', rsuffix='',sort=False):

其参数的意义与merge方法中的参数意义基本一样。

以上这篇在Pandas中DataFrame数据合并,连接(concat,merge,join)的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python的lambda匿名函数的简单介绍
Apr 25 Python
详解Python的Django框架中的templates设置
May 11 Python
Python连接数据库学习之DB-API详解
Feb 07 Python
pytorch cnn 识别手写的字实现自建图片数据
May 20 Python
PyCharm代码提示忽略大小写设置方法
Oct 28 Python
Python多线程应用于自动化测试操作示例
Dec 06 Python
pytorch打印网络结构的实例
Aug 19 Python
Python csv模块使用方法代码实例
Aug 29 Python
opencv3/python 鼠标响应操作详解
Dec 11 Python
Pycharm 使用 Pipenv 新建的虚拟环境(图文详解)
Apr 16 Python
Python不支持 i ++ 语法的原因解析
Jul 22 Python
python中温度单位转换的实例方法
Dec 27 Python
对python numpy.array插入一行或一列的方法详解
Jan 29 #Python
对python中list的拷贝与numpy的array的拷贝详解
Jan 29 #Python
10 分钟快速入门 Python3的教程
Jan 29 #Python
解决python2 绘图title,xlabel,ylabel出现中文乱码的问题
Jan 29 #Python
解决python中画图时x,y轴名称出现中文乱码的问题
Jan 29 #Python
完美解决Python matplotlib绘图时汉字显示不正常的问题
Jan 29 #Python
通过python爬虫赚钱的方法
Jan 29 #Python
You might like
PHP 5.0对象模型深度探索之对象复制
2008/03/27 PHP
微信公众平台DEMO(PHP)
2016/05/04 PHP
PHP 实现人民币小写转换成大写的方法及大小写转换函数
2017/11/17 PHP
thinkphp 中的volist标签在ajax操作中的特殊性(推荐)
2018/01/15 PHP
实例讲解PHP页面静态化
2018/02/05 PHP
JavaScript 继承详解(二)
2009/07/13 Javascript
基于jQuery的ajax功能实现web service的json转化
2009/08/29 Javascript
JQuery的$命名冲突详细解析
2013/12/28 Javascript
JavaScript获取伪元素(Pseudo-Element)属性的方法技巧
2015/03/13 Javascript
JavaScript中的函数(二)
2015/12/23 Javascript
javascript实现无法关闭的弹框
2016/11/27 Javascript
微信小程序图片轮播组件gallery slider使用方法详解
2018/01/31 Javascript
Vue2.0系列之过滤器的使用
2018/03/01 Javascript
解决vue router组件状态刷新消失的问题
2018/08/01 Javascript
vue-cli脚手架的安装教程图解
2018/09/02 Javascript
js实现延迟加载的几种方法详解
2019/01/19 Javascript
Vue自定义指令写法与个人理解
2019/02/09 Javascript
[12:21]VICI vs TNC (BO3)
2018/06/07 DOTA
Python的垃圾回收机制深入分析
2014/07/16 Python
Python中的迭代器与生成器高级用法解析
2016/06/28 Python
Python数据类型之Dict字典实例详解
2019/05/07 Python
Anaconda+vscode+pytorch环境搭建过程详解
2020/05/25 Python
对python中list的五种查找方法说明
2020/07/13 Python
python 基于opencv 绘制图像轮廓
2020/12/11 Python
详解如何在css中引入自定义字体(font-face)
2018/05/17 HTML / CSS
DC Shoes官网:美国滑板鞋和服饰品牌
2017/09/03 全球购物
HealthElement海外旗舰店:新西兰大卖场
2018/02/23 全球购物
工商管理专业实习大学生自我鉴定
2013/09/19 职场文书
物流专业毕业生推荐信范文
2013/11/18 职场文书
国贸专业个人求职信范文
2014/01/08 职场文书
《小儿垂钓》教学反思
2014/02/23 职场文书
《郑和远航》教学反思
2014/04/16 职场文书
护理工作个人总结
2015/03/03 职场文书
个性与发展自我评价
2015/03/06 职场文书
深入理解 Golang 的字符串
2022/05/04 Golang
错误码NET::ERR_CERT_DATE_INVALID证书已过期解决方法?
2022/07/07 数码科技