在Pandas中DataFrame数据合并,连接(concat,merge,join)的实例


Posted in Python onJanuary 29, 2019

最近在工作中,遇到了数据合并、连接的问题,故整理如下,供需要者参考~

一、concat:沿着一条轴,将多个对象堆叠到一起

concat方法相当于数据库中的全连接(union all),它不仅可以指定连接的方式(outer join或inner join)还可以指定按照某个轴进行连接。与数据库不同的是,它不会去重,但是可以使用drop_duplicates方法达到去重的效果。

concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, 
    keys=None, levels=None, names=None, verify_integrity=False, copy=True):

pd.concat()只是单纯的把两个表拼接在一起,参数axis是关键,它用于指定是行还是列,axis默认是0。

当axis=0时,pd.concat([obj1, obj2])的效果与obj1.append(obj2)是相同的;当axis=1时,pd.concat([obj1, obj2], axis=1)的效果与pd.merge(obj1, obj2, left_index=True, right_index=True, how='outer')是相同的。

merge方法的介绍请参看下文。

参数介绍:

objs:需要连接的对象集合,一般是列表或字典;

axis:连接轴向;

join:参数为‘outer'或‘inner';

join_axes=[]:指定自定义的索引;

keys=[]:创建层次化索引;

ignore_index=True:重建索引

举例:

df1=DataFrame(np.random.randn(3,4),columns=['a','b','c','d']) 
 
df2=DataFrame(np.random.randn(2,3),columns=['b','d','a']) 
 
pd.concat([df1,df2]) 
 
     a     b     c     d 
0 -0.848557 -1.163877 -0.306148 -1.163944 
1 1.358759 1.159369 -0.532110 2.183934 
2 0.532117 0.788350 0.703752 -2.620643 
0 -0.316156 -0.707832    NaN -0.416589 
1 0.406830 1.345932    NaN -1.874817 
 
pd.concat([df1,df2],ignore_index=True) 
 
     a     b     c     d 
0 -0.848557 -1.163877 -0.306148 -1.163944 
1 1.358759 1.159369 -0.532110 2.183934 
2 0.532117 0.788350 0.703752 -2.620643 
3 -0.316156 -0.707832    NaN -0.416589 
4 0.406830 1.345932    NaN -1.874817

二、merge:通过键拼接列

类似于关系型数据库的连接方式,可以根据一个或多个键将不同的DatFrame连接起来。该函数的典型应用场景是,针对同一个主键存在两张不同字段的表,根据主键整合到一张表里面。

merge(left, right, how='inner', on=None, left_on=None, right_on=None, 
left_index=False, right_index=False, sort=True, 
suffixes=('_x', '_y'), copy=True, indicator=False)

参数介绍:

left和right:两个不同的DataFrame;

how:连接方式,有inner、left、right、outer,默认为inner;

on:指的是用于连接的列索引名称,必须存在于左右两个DataFrame中,如果没有指定且其他参数也没有指定,则以两个DataFrame列名交集作为连接键;

left_on:左侧DataFrame中用于连接键的列名,这个参数左右列名不同但代表的含义相同时非常的有用;

right_on:右侧DataFrame中用于连接键的列名;

left_index:使用左侧DataFrame中的行索引作为连接键;

right_index:使用右侧DataFrame中的行索引作为连接键;

sort:默认为True,将合并的数据进行排序,设置为False可以提高性能;

suffixes:字符串值组成的元组,用于指定当左右DataFrame存在相同列名时在列名后面附加的后缀名称,默认为('_x', '_y');

copy:默认为True,总是将数据复制到数据结构中,设置为False可以提高性能;

indicator:显示合并数据中数据的来源情况

举例:

# 1.默认以重叠的列名当做连接键。
df1=DataFrame({'key':['a','b','b'],'data1':range(3)})  
df2=DataFrame({'key':['a','b','c'],'data2':range(3)})  
pd.merge(df1,df2)  #没有指定连接键,默认用重叠列名,没有指定连接方式 
 
  data1 key data2 
0   0  a   0 
1   1  b   1 
2   2  b   1 
 
# 2.默认做inner连接(取key的交集),连接方式还有(left,right,outer),制定连接方式加参数:how=''
pd.merge(df2,df1) 
 
  data2 key data1 
0   0  a   0 
1   1  b   1 
2   1  b   2          #默认内连接,可以看见c没有连接上。 
 
pd.merge(df2,df1,how='left')  #通过how,指定连接方式 
 
  data2 key data1 
0   0  a   0 
1   1  b   1 
2   1  b   2 
3   2  c  NaN 
 
# 3.多键连接时将连接键组成列表传入,例:pd.merge(df1,df2,on=['key1','key2']
right=DataFrame({'key1':['foo','foo','bar','bar'], 
     'key2':['one','one','one','two'], 
     'lval':[4,5,6,7]}) 
left=DataFrame({'key1':['foo','foo','bar'], 
     'key2':['one','two','one'], 
     'lval':[1,2,3]}) 
right=DataFrame({'key1':['foo','foo','bar','bar'], 
     'key2':['one','one','one','two'], 
     'lval':[4,5,6,7]}) 
pd.merge(left,right,on=['key1','key2'],how='outer') #传出数组 
  
 key1 key2 lval_x lval_y 
0 foo one    1    4 
1 foo one    1    5 
2 foo two    2   NaN 
3 bar one    3    6 
4 bar two   NaN    7 
 
# 4.如果两个对象的列名不同,可以分别指定,例:pd.merge(df1,df2,left_on='lkey',right_on='rkey')
df3=DataFrame({'key3':['foo','foo','bar','bar'], #将上面的right的key 改了名字 
     'key4':['one','one','one','two'], 
     'lval':[4,5,6,7]}) 
pd.merge(left,df3,left_on='key1',right_on='key3') #键名不同的连接 
  
 key1 key2 lval_x key3 key4 lval_y 
0 foo one    1 foo one    4 
1 foo one    1 foo one    5 
2 foo two    2 foo one    4 
3 foo two    2 foo one    5 
4 bar one    3 bar one    6 
5 bar one    3 bar two    7

三、join:主要用于索引上的合并

join(self, other, on=None, how='left', lsuffix='', rsuffix='',sort=False):

其参数的意义与merge方法中的参数意义基本一样。

以上这篇在Pandas中DataFrame数据合并,连接(concat,merge,join)的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python中使用PIPE操作Linux管道
Feb 04 Python
Python pickle模块用法实例
Apr 14 Python
浅谈python中set使用
Jun 30 Python
python模块之time模块(实例讲解)
Sep 13 Python
python3+selenium自动化测试框架详解
Mar 17 Python
python 计算一个字符串中所有数字的和实例
Jun 11 Python
通过pycharm使用git的步骤(图文详解)
Jun 13 Python
Python实现随机取一个矩阵数组的某几行
Nov 26 Python
django框架使用views.py的函数对表进行增删改查内容操作详解【models.py中表的创建、views.py中函数的使用,基于对象的跨表查询】
Dec 12 Python
Python class的继承方法代码实例
Feb 14 Python
PyCharm 2020.2下配置Anaconda环境的方法步骤
Sep 23 Python
Python获取百度热搜的完整代码
Apr 07 Python
对python numpy.array插入一行或一列的方法详解
Jan 29 #Python
对python中list的拷贝与numpy的array的拷贝详解
Jan 29 #Python
10 分钟快速入门 Python3的教程
Jan 29 #Python
解决python2 绘图title,xlabel,ylabel出现中文乱码的问题
Jan 29 #Python
解决python中画图时x,y轴名称出现中文乱码的问题
Jan 29 #Python
完美解决Python matplotlib绘图时汉字显示不正常的问题
Jan 29 #Python
通过python爬虫赚钱的方法
Jan 29 #Python
You might like
压力如何影响浓缩咖啡品质
2021/03/03 咖啡文化
PHP时间戳与日期之间转换的实例介绍
2013/04/19 PHP
ci检测是ajax还是页面post提交数据的方法
2014/11/10 PHP
php使用curl实现简单模拟提交表单功能
2017/05/15 PHP
ThinkPHP3.1.2 使用cli命令行模式运行的方法
2020/04/14 PHP
JavaScript 继承的实现
2009/07/09 Javascript
javascript学习笔记(十) js对象 继承
2012/06/19 Javascript
基于dom编程中 动态创建与删除元素的使用
2013/04/17 Javascript
JS中自定义定时器让它在某一时刻执行
2014/09/02 Javascript
js实现可旋转的立方体模型
2016/10/16 Javascript
JavaScript关联数组用法分析【概念、定义、遍历】
2017/03/15 Javascript
BootStrap Fileinput上传插件使用实例代码
2017/07/28 Javascript
VUE页面中加载外部HTML的示例代码
2017/09/20 Javascript
图片加载完成再执行事件的实例
2017/11/16 Javascript
React组件refs的使用详解
2018/02/09 Javascript
Nodejs中的JWT和Session的使用
2018/08/21 NodeJs
微信小程序实现商品属性联动选择
2019/02/15 Javascript
JavaScript实现的弹出遮罩层特效经典示例【基于jQuery】
2019/07/10 jQuery
使用typescript改造koa开发框架的实现
2020/02/04 Javascript
python插入排序算法的实现代码
2013/11/21 Python
python连接池实现示例程序
2013/11/26 Python
spyder常用快捷键(分享)
2017/07/19 Python
Python多线程多进程实例对比解析
2020/03/12 Python
只要五步 就可以用HTML5/CSS3快速制作便签贴特效(图)
2012/06/04 HTML / CSS
HTML5 Canvas绘制五星红旗
2016/05/04 HTML / CSS
优秀交警事迹材料
2014/01/26 职场文书
高中学生期末评语
2014/04/25 职场文书
小学生美德少年事迹材料
2014/08/24 职场文书
如何签定毕业生就业协议书
2014/09/28 职场文书
2014业务员年终工作总结
2014/12/09 职场文书
2015毕业寄语大全
2015/02/26 职场文书
2015年个人招商工作总结
2015/04/25 职场文书
大学毕业生自我鉴定范文
2019/06/21 职场文书
Pyhton模块和包相关知识总结
2021/05/12 Python
python plt.plot bar 如何设置绘图尺寸大小
2021/06/01 Python
react antd实现动态增减表单
2021/06/03 Javascript