Python并发之多进程的方法实例代码


Posted in Python onAugust 15, 2018

一,进程的理论基础

一个应用程序,归根结底是一堆代码,是静态的,而进程才是执行中的程序,在一个程序运行的时候会有多个进程并发执行。

进程和线程的区别:

  • 进程是系统资源分配的基本单位。
  • 一个进程内可以包含多个线程,属于一对多的关系,进程内的资源,被其内的线程共享
  • 线程是进程运行的最小单位,如果说进程是完成一个功能,那么其线程就是完成这个功能的基本单位
  • 进程间资源不共享,多进程切换资源开销,难度大,同一进程内的线程资源共享,多线程切换资源开销,难度小

进程与线程的共同点:

都是为了提高程序运行效率,都有执行的优先权

二,Python的多进程( multiprocessing模块)

创建一个进程(和创建线程类似)

方法一:创建Process对象,通过对象调用start()方法启动进程

from multiprocessing import Process
def foo(name):
 print('hello,%s'%name)
if __name__ == '__main__':
 p1=Process(target=foo,args=('world',))
 p2 = Process(target=foo, args=('China',))
 p1.start()
 p2.start()
 print('=====主进程=====')
 # == == =主进程 == == =
 # hello, world
 # hello, China
 #主进程和子进程并发执行

注意:Process对象只能在在 if __name__ == '__main__':下创建,不然会报错。

方法二:自定义一个类继承Process类,并重写run()方法,将执行代码放在其内

from multiprocessing import Process
class MyProcess(Process):
 def __init__(self,name):
  super().__init__()
  self.name = name
 def run(self):
  print('hello,%s'%self.name)
if __name__ == '__main__':
 myprocess1 = MyProcess('world')
 myprocess2 = MyProcess('world')
 myprocess1.start()
 myprocess2.start()

Process内置方法

实例方法:

p.start():启动进程,并调用该子进程中的p.run()

p.run():进程启动时运行的方法,正是它去调用target指定的函数,我们自定义类的类中一定要实现该方法 

p.terminate():强制终止进程p,不会进行任何清理操作,如果p创建了子进程,该子进程就成了僵尸进程,使用该方法需要特别小心这种情况。如果p还保存了一个锁那么也将不会被释放,进而导致死锁

p.is_alive():如果p仍然运行,返回True

p.join([timeout]):主线程等待p终止。timeout是可选的超时时间
Process属性

p.daemon:默认值为False,如果设为True,代表p为后台运行的守护进程,当p的父进程终止时,p也随之终止,并且设定为True后,p不能创建自己的新进程,必须在p.start()之前设置

p.name:进程的名称

p.pid:进程的pid

p.exitcode:进程在运行时为None、如果为?N,表示被信号N结束(了解即可)

守护进程

类似于守护线程,只不过守护线程是对象的一个方法,而守护进程封装成对象的属性。

from multiprocessing import Process
import time
class MyProcess(Process):
 def __init__(self,name):
  super().__init__()
  self.name = name
 def run(self):
  time.sleep(3)
  print('hello,%s'%self.name)
if __name__ == '__main__':
 myprocess1=MyProcess('world')
 myprocess1.daemon = True
 myprocess1.start()
 print('结束')
#不会输出‘hello world',因为设置为守护进程,主进程不会等待

也可以使用join方法,使主进程等待

from multiprocessing import Process
import time
class MyProcess(Process):
 def __init__(self,name):
  super().__init__()
  self.name = name
 def run(self):
  time.sleep(3)
  print('hello,%s'%self.name)
if __name__ == '__main__':
 myprocess1=MyProcess('world')
 myprocess1.daemon = True
 myprocess1.start()
 myprocess1.join() #程序阻塞
 print('结束')
join()

进程同步和锁

进程虽然不像线程共享资源,但是这并不意味着进程间不 需要加锁,比如不同进程会共享同一个终端 ( 屏幕),或者操作同一个文件,数据库,那么数据安全还是很有必要的,因此我们可以加锁,

from multiprocessing import Process,Lock
import time
def a_print(l): #需要传入对象,因为信息不共享
 l.acquire()
 print('我要打印信息')
 time.sleep(1)
 print('我打印完了')
 l.release()
if __name__ == '__main__':
 l = Lock()
 for i in range(20):
  p = Process(target=a_print,args=(l,))
  p.start()

信号量(Semaphore)

能够并发执行的进程数,超出的进程阻塞,直到有进程运行完成。

Semaphore管理一个内置的计数器,

每当调用acquire()时内置计数器-1;

调用release() 时内置计数器+1;

计数器不能小于0;当计数器为0时,acquire()将阻塞进程直到其他进程调用release()。

from multiprocessing import Process,Queue,Semaphore
import time,random
def seat(s,n):
 s.acquire()
 print('学生%d坐下了'%n)
 time.sleep(random.randint(1,2))
 s.release()
if __name__ == '__main__':
 s = Semaphore(5)
 for i in range(20):
  p = Process(target=seat,args=(s,i))
  p.start()
 print('-----主进程-------')

注意:其实信号量和锁类似,只是限制进程运行某个代码块的数量(锁为1个),并不是能限制并发的进程,如上述代码,一次性还是创建了20个进程

事件(Event)

from multiprocessing import Process,Event
import time, random
def eating(event):
 event.wait()
 print('去吃饭的路上...')
def makeing(event):
 print('做饭中')
 time.sleep(random.randint(1,2))
 print('做好了,快来...')
 event.set()
if __name__ == '__main__':
 event=Event()
 t1 = Process(target=eating,args=(event,))
 t2 = Process(target=makeing,args=(event,))
 t1.start()
 t2.start()
 # 做饭中
 # 做好了,快来...
 # 去吃饭的路上...

和线程事件几乎一致

进程队列(Queue)

进程队列是进程通讯的方式之一。使用multiprocessing 下的Queue

from multiprocessing import Process,Queue
import time
def func1(queue):
 while True:
  info=queue.get()
  if info == None:
   return 
  print(info)
def func2(queue):
 for i in range(10):
  time.sleep(1)
  queue.put('is %d'%i)
 queue.put(None) #结束的标志
if __name__ == '__main__':
 q = Queue()
 p1 = Process(target=func1,args=(q,))
 p2 = Process(target=func2, args=(q,))
 p1.start()
 p2.start()
Queue类的方法,源码如下:
class Queue(object):
 def __init__(self, maxsize=-1): #可以传参设置队列最大容量
  self._maxsize = maxsize
 def qsize(self): #返回当前时刻队列中的个数
  return 0
 def empty(self): #是否为空
  return False
 def full(self): 是否满了
  return False
 def put(self, obj, block=True, timeout=None): #放值,blocked和timeout。如果blocked为True(默认值),并且timeout为正值,该方法会阻塞timeout指定的时间,直到该队列有剩余的空间。如果超时,会抛出Queue.Full异常。如果blocked为False,但该Queue已满,会立即抛出Queue.Full异常
  pass
 def put_nowait(self, obj): #=put(False)
  pass
 def get(self, block=True, timeout=None): 获取值,get方法有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,那么在等待时间内没有取到任何元素,会抛出Queue.Empty异常。如果blocked为False,有两种情况存在,如果Queue有一个值可用,则立即返回该值,否则,如果队列为空,则立即抛出Queue.Empty异常.
  pass
 def get_nowait(self): # = get(False)
  pass
 def close(self): #将队列关闭
  pass
 def join_thread(self): #略,几乎不用
  pass
 def cancel_join_thread(self):
  pass

进程队列源码注释

进程池

进程的消耗是很大的,因此我们不能无节制的开启新进程,因此我们可以 通过维护一个进程池来控制进程的数量 。这就不同于信号量,进程池可以从源头控制进程数量。在Python中可以通过如下方法使用

同步调用

from multiprocessing import Pool
import time, random, os
def func(n):
 pid = os.getpid()
 print('进程%s正在处理第%d个任务'%(pid,n),'时间%s'%time.strftime('%H-%M-%S'))
 time.sleep(2)
 res = '处理%s'%random.choice(['成功','失败'])
 return res
if __name__ == '__main__':
 p = Pool(4) #创建4个进程,
 li = []
 for i in range(10):
  res = p.apply(func,args=(i,)) 交给进程池处理,处理完成才返回值,会阻塞,即使池内还有空余进程,相当于顺序执行
  li.append(res)
 for i in li:
  print(i)

#进程1916正在处理第0个任务 时间21-02-53
#进程1240正在处理第1个任务 时间21-02-55
#进程3484正在处理第2个任务 时间21-02-57
#进程7512正在处理第3个任务 时间21-02-59
#进程1916正在处理第4个任务 时间21-03-01
#进程1240正在处理第5个任务 时间21-03-03
#进程3484正在处理第6个任务 时间21-03-05
#进程7512正在处理第7个任务 时间21-03-07
#进程1916正在处理第8个任务 时间21-03-09
#进程1240正在处理第9个任务 时间21-03-11

从结果可以发现两点:

  1. 不是并发处理
  2. 一直都只有四个进程,串行执行

因此进程池提供了 异步处理 的方式

from multiprocessing import Pool
import time, random, os
def func(n):
 pid = os.getpid()
 print('进程%s正在处理第%d个任务'%(pid,n),'时间%s'%time.strftime('%H-%M-%S'))
 time.sleep(2)
 res = '处理%s'%random.choice(['成功','失败'])
 return res

if __name__ == '__main__':
 p = Pool(4)
 li = []
 for i in range(10):
  res = p.apply_async(func,args=(i,)) 结果不会立刻返回,遇到阻塞,开启下一个进程,在这,相当于几乎同时出现四个打印结果(一个线程处理一个任务,处理完下个任务才能进来)
  li.append(res)

 p.close() #join之前需要关闭进程池
 p.join() #因为异步,所以需要等待池内进程工作结束再继续
 for i in li:
  print(i.get()) #i是一个对象,通过get方法获取返回值,而同步则没有该方法

关于回调函数

from multiprocessing import Pool
import time, random, os
def func(n):
 pid = os.getpid()
 print('进程%s正在处理第%d个任务'%(pid,n),'时间%s'%time.strftime('%H-%M-%S'))
 time.sleep(2)
 res = '处理%s'%random.choice(['成功','失败'])
 return res

def foo(info):
 print(info) #传入值为进程执行结果

if __name__ == '__main__':
 p = Pool(4)
 li = []
 for i in range(10):
  res = p.apply_async(func,args=(i,),callback = foo) callback()回调函数会在进程执行完之后调用(主进程调用) 
  li.append(res)

 p.close() 
 p.join() 
 for i in li:
  print(i.get())

有回调函数

总结

以上所述是小编给大家介绍的Python并发之多进程的方法实例代码,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对三水点靠木网站的支持!

Python 相关文章推荐
Python中的TCP socket写法示例
May 11 Python
基于python中theano库的线性回归
Aug 31 Python
Python实现将Excel转换成为image的方法
Oct 23 Python
Python将字符串常量转化为变量方法总结
Mar 17 Python
Python使用numpy模块实现矩阵和列表的连接操作方法
Jun 26 Python
Django框架ORM数据库操作实例详解
Nov 07 Python
浅谈Python中os模块及shutil模块的常规操作
Apr 03 Python
Python3爬虫中关于Ajax分析方法的总结
Jul 10 Python
利用Python实现朋友圈中的九宫格图片效果
Sep 03 Python
python将下载到本地m3u8视频合成MP4的代码详解
Nov 24 Python
利用Selenium添加cookie实现自动登录的示例代码(fofa)
May 08 Python
Python基础数据类型tuple元组的概念与用法
Aug 02 Python
Python使用sort和class实现的多级排序功能示例
Aug 15 #Python
Python常见排序操作示例【字典、列表、指定元素等】
Aug 15 #Python
Centos下实现安装Python3.6和Python2共存
Aug 15 #Python
详解Python中的type和object
Aug 15 #Python
python 通过 socket 发送文件的实例代码
Aug 14 #Python
Python 打印中文字符的三种方法
Aug 14 #Python
django如何连接已存在数据的数据库
Aug 14 #Python
You might like
PHP 将逗号、空格、回车分隔的字符串转换为数组的函数
2012/06/07 PHP
PHP两种去掉数组重复值的方法比较
2014/06/19 PHP
destoon各类调用汇总
2014/06/20 PHP
在PHP站点的页面上添加Facebook评论插件的实例教程
2016/01/08 PHP
修改Laravel5.3中的路由文件与路径
2016/08/10 PHP
Yii框架引用插件和ckeditor中body与P标签去除的方法
2017/01/19 PHP
关于JavaScript与HTML的交互事件
2013/04/12 Javascript
javascript得到当前页的来路即前一页地址的方法
2014/02/18 Javascript
window.returnValue使用方法示例介绍
2014/07/03 Javascript
AngularJS基础 ng-keydown 指令简单示例
2016/08/02 Javascript
jQuery Mobile漏洞会有跨站脚本攻击风险
2017/02/12 Javascript
JSONP基础知识详解
2017/03/19 Javascript
JavaScript+Html5实现按钮复制文字到剪切板功能(手机网页兼容)
2017/03/30 Javascript
vue.js整合mint-ui里的轮播图实例代码
2017/12/27 Javascript
详解mpvue小程序中怎么引入iconfont字体图标
2018/10/01 Javascript
详解Jest结合Vue-test-utils使用的初步实践
2019/06/27 Javascript
Vue+Node服务器查询Mongo数据库及页面数据传递操作实例分析
2019/12/20 Javascript
JQuery中DOM节点的操作与访问方法实例分析
2019/12/23 jQuery
解决python3在anaconda下安装caffe失败的问题
2017/06/15 Python
Python中用字符串调用函数或方法示例代码
2017/08/04 Python
python正则实现计算器功能
2017/12/14 Python
利用Python对文件夹下图片数据进行批量改名的代码实例
2019/02/21 Python
Python Django简单实现session登录注销过程详解
2019/08/06 Python
Python 装饰器原理、定义与用法详解
2019/12/07 Python
django列表筛选功能的实现代码
2020/03/27 Python
Python 打印自己设计的字体的实例讲解
2021/01/04 Python
CSS3结构性伪类选择器九种写法
2012/04/18 HTML / CSS
Html5页面内使用JSON动画的实现
2019/01/29 HTML / CSS
Theflamel意大利:女士奢华服装、鞋子和配件
2020/01/11 全球购物
学生实习自我鉴定
2013/10/11 职场文书
文明倡议书范文
2014/04/15 职场文书
北京申奥口号
2014/06/19 职场文书
《认识年月日》教学反思
2016/02/19 职场文书
2019中秋节祝福语大全,提前收藏啦
2019/09/10 职场文书
MySQL系列之六 用户与授权
2021/07/02 MySQL
不同品牌、不同型号对讲机如何互相通联
2022/02/18 无线电