python+pandas+时间、日期以及时间序列处理方法


Posted in Python onJuly 10, 2018

先简单的了解下日期和时间数据类型及工具

python标准库包含于日期(date)和时间(time)数据的数据类型,datetime、time以及calendar模块会被经常用到。

datetime以毫秒形式存储日期和时间,datetime.timedelta表示两个datetime对象之间的时间差。

给datetime对象加上或减去一个或多个timedelta,会产生一个新的对象

from datetime import datetime
from datetime import timedelta
now = datetime.now()
now
datetime.datetime(2017, 6, 27, 15, 56, 56, 167000)
datetime参数:datetime(year, month, day[, hour[, minute[, second[, microsecond[,tzinfo]]]]])
delta = now - datetime(2017,6,27,10,10,10,10)
delta
datetime.timedelta(0, 20806, 166990)
delta.days
 0
delta.seconds
 20806
delta.microseconds
 166990

只有这三个参数了!

datetime模块中的数据类型

类型 说明
date 以公历形式存储日历日期(年、月、日)
time 将时间存储为时、分、秒、毫秒
datetime 存储日期和时间
timedelta 表示两个datetime值之间的差(日、秒、毫秒)

字符串和datetime的相互转换

1)python标准库函数

日期转换成字符串:利用str 或strftime

字符串转换成日期:datetime.strptime

stamp = datetime(2017,6,27)
str(stamp)
 '2017-06-27 00:00:00'
stamp.strftime('%y-%m-%d')#%Y是4位年,%y是2位年
 '17-06-27'
#对多个时间进行解析成字符串
date = ['2017-6-26','2017-6-27']
datetime2 = [datetime.strptime(x,'%Y-%m-%d') for x in date]
datetime2
[datetime.datetime(2017, 6, 26, 0, 0), datetime.datetime(2017, 6, 27, 0, 0)]

2)第三方库dateutil.parser的时间解析函数

from dateutil.parser import parse
parse('2017-6-27')
 datetime.datetime(2017, 6, 27, 0, 0)
parse('27/6/2017',dayfirst =True)
 datetime.datetime(2017, 6, 27, 0, 0)

3)pandas处理成组日期

pandas通常用于处理成组日期,不管这些日期是DataFrame的轴索引还是列,to_datetime方法可以解析多种不同的日期表示形式。

date
 ['2017-6-26', '2017-6-27']
import pandas as pd
pd.to_datetime(date)
 DatetimeIndex(['2017-06-26', '2017-06-27'], dtype='datetime64[ns]', freq=None)

datetime 格式定义

代码 说明
%Y 4位数的年
%y 2位数的年
%m 2位数的月[01,12]
%d 2位数的日[01,31]
%H 时(24小时制)[00,23]
%l 时(12小时制)[01,12]
%M 2位数的分[00,59]
%S 秒[00,61]有闰秒的存在
%w 用整数表示的星期几[0(星期天),6]
%F %Y-%m-%d简写形式例如,2017-06-27
%D %m/%d/%y简写形式

pandas时间序列基础以及时间、日期处理

pandas最基本的时间序列类型就是以时间戳(时间点)(通常以python字符串或datetime对象表示)为索引的Series:

dates = ['2017-06-20','2017-06-21',\
  '2017-06-22','2017-06-23','2017-06-24','2017-06-25','2017-06-26','2017-06-27']
import numpy as np
ts = pd.Series(np.random.randn(8),index = pd.to_datetime(dates))
ts
 2017-06-20 0.788811
 2017-06-21 0.372555
 2017-06-22 0.009967
 2017-06-23 -1.024626
 2017-06-24 0.981214
 2017-06-25 0.314127
 2017-06-26 -0.127258
 2017-06-27 1.919773
 dtype: float64
ts.index
 DatetimeIndex(['2017-06-20', '2017-06-21', '2017-06-22', '2017-06-23',
   '2017-06-24', '2017-06-25', '2017-06-26', '2017-06-27'],
   dtype='datetime64[ns]', freq=None)

pandas不同索引的时间序列之间的算术运算会自动按日期对齐

ts[::2]#从前往后每隔两个取数据
 2017-06-20 0.788811
 2017-06-22 0.009967
 2017-06-24 0.981214
 2017-06-26 -0.127258
 dtype: float64
ts[::-2]#从后往前逆序每隔两个取数据
 2017-06-27 1.919773
 2017-06-25 0.314127
 2017-06-23 -1.024626
 2017-06-21 0.372555
 dtype: float64
ts + ts[::2]#自动数据对齐
 2017-06-20 1.577621
 2017-06-21  NaN
 2017-06-22 0.019935
 2017-06-23  NaN
 2017-06-24 1.962429
 2017-06-25  NaN
 2017-06-26 -0.254516
 2017-06-27  NaN
 dtype: float64

索引为日期的Series和DataFrame数据的索引、选取以及子集构造

方法:

1).index[number_int]

2)[一个可以被解析为日期的字符串]

3)对于,较长的时间序列,只需传入‘年'或‘年月'可返回对应的数据切片

4)通过时间范围进行切片索引

ts
 2017-06-20 0.788811
 2017-06-21 0.372555
 2017-06-22 0.009967
 2017-06-23 -1.024626
 2017-06-24 0.981214
 2017-06-25 0.314127
 2017-06-26 -0.127258
 2017-06-27 1.919773
 dtype: float64


ts[ts.index[2]]
 0.0099673896063391908
ts['2017-06-21']#传入可以被解析成日期的字符串
 0.37255538918121028
ts['21/06/2017']
 0.37255538918121028
ts['20170621']
 0.37255538918121028
ts['2017-06']#传入年或年月
 2017-06-20 0.788811
 2017-06-21 0.372555
 2017-06-22 0.009967
 2017-06-23 -1.024626
 2017-06-24 0.981214
 2017-06-25 0.314127
 2017-06-26 -0.127258
 2017-06-27 1.919773
 dtype: float64


ts['2017-06-20':'2017-06-23']#时间范围进行切片
 2017-06-20 0.788811
 2017-06-21 0.372555
 2017-06-22 0.009967
 2017-06-23 -1.024626
 dtype: float64

带有重复索引的时间序列

1).index.is_unique检查索引日期是否是唯一的

2)对非唯一时间戳的数据进行聚合,通过groupby,并传入level = 0(索引的唯一一层)

dates = pd.DatetimeIndex(['2017/06/01','2017/06/02','2017/06/02','2017/06/02','2017/06/03'])
dates
 DatetimeIndex(['2017-06-01', '2017-06-02', '2017-06-02', '2017-06-02',
   '2017-06-03'],
   dtype='datetime64[ns]', freq=None)

dup_ts = pd.Series(np.arange(5),index = dates)
dup_ts
 2017-06-01 0
 2017-06-02 1
 2017-06-02 2
 2017-06-02 3
 2017-06-03 4
 dtype: int32

dup_ts.index.is_unique
 False
dup_ts['2017-06-02']
 2017-06-02 1
 2017-06-02 2
 2017-06-02 3
 dtype: int32

grouped = dup_ts.groupby(level=0).mean()
grouped
 2017-06-01 0
 2017-06-02 2
 2017-06-03 4
 dtype: int32

dup_df = pd.DataFrame(np.arange(10).reshape((5,2)),index = dates )
dup_df

0 1
2017-06-01 0 1
2017-06-02 2 3
2017-06-02 4 5
2017-06-02 6 7
2017-06-03 8 9
grouped_df = dup_df.groupby(level=0).mean()##针对DataFrame
grouped_df

0 1
2017-06-01 0 1
2017-06-02 4 5
2017-06-03 8 9

总结

该篇博客主要内容:

1)字符串、日期的转换方法

2)日期和时间的主要python,datetime、timedelta、pandas.to_datetime等

3)以时间为索引的Series和DataFrame的索引、切片

4)带有重复时间索引时的索引,.groupby(level=0)应用

以上这篇python+pandas+时间、日期以及时间序列处理方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
低版本中Python除法运算小技巧
Apr 05 Python
Python中property属性实例解析
Feb 10 Python
python3+PyQt5实现自定义流体混合窗口部件
Apr 24 Python
在django模板中实现超链接配置
Aug 21 Python
Python的互斥锁与信号量详解
Sep 12 Python
django formset实现数据表的批量操作的示例代码
Dec 06 Python
聊聊python中的循环遍历
Sep 07 Python
Python引入多个模块及包的概念过程解析
Sep 21 Python
Django自定义YamlField实现过程解析
Nov 11 Python
Python获取android设备cpu和内存占用情况
Nov 15 Python
python3.8.3安装教程及环境配置的详细教程(64-bit)
Nov 28 Python
Python+Selenium实现读取网易邮箱验证码
Mar 13 Python
使用Python的Dataframe取两列时间值相差一年的所有行方法
Jul 10 #Python
Python Dataframe 指定多列去重、求差集的方法
Jul 10 #Python
Python实现对文件进行单词划分并去重排序操作示例
Jul 10 #Python
python3中函数参数的四种简单用法
Jul 09 #Python
python3学习之Splash的安装与实例教程
Jul 09 #Python
Python基于sklearn库的分类算法简单应用示例
Jul 09 #Python
Python不使用int()函数把字符串转换为数字的方法
Jul 09 #Python
You might like
php中var_export与var_dump的区别分析
2010/08/21 PHP
深入php 正则表达式的学习探讨
2013/06/06 PHP
浅析PHP Socket技术
2013/08/02 PHP
浅析php创建者模式
2014/11/25 PHP
php通过Chianz.com获取IP地址与地区的方法
2015/01/14 PHP
php使用timthumb生成缩略图的方法
2016/01/22 PHP
PHP下使用mysqli的函数连接mysql出现warning: mysqli::real_connect(): (hy000/1040): ...
2016/02/14 PHP
PHP中如何使用Redis接管文件存储Session详解
2018/11/28 PHP
redis+php实现微博(三)微博列表功能详解
2019/09/23 PHP
Array.prototype.slice 使用扩展
2010/06/09 Javascript
JS、DOM和JQuery之间的关系示例分析
2014/04/09 Javascript
基于豆瓣API+Angular开发的web App
2015/01/02 Javascript
兼容各大浏览器的JavaScript阻止事件冒泡代码
2015/07/09 Javascript
js实现仿微博滚动显示信息的效果
2015/12/21 Javascript
最丑的时钟效果!js canvas时钟制作方法
2016/08/15 Javascript
省市区三级联动jquery实现代码
2020/04/15 Javascript
JavaScript实现的微信二维码图片生成器的示例
2016/10/26 Javascript
基于jQuery实现滚动切换效果
2016/12/02 Javascript
微信小程序 PHP后端form表单提交实例详解
2017/01/12 Javascript
layer.close()关闭进度条和Iframe窗的方法
2018/08/17 Javascript
详解vue使用vue-layer-mobile组件实现toast,loading效果
2018/08/31 Javascript
JS实现容器模块左右拖动效果
2020/01/14 Javascript
[01:44]剑指西雅图 展望TI之CIS战队专访
2014/06/25 DOTA
python操作列表的函数使用代码详解
2017/12/28 Python
根据DataFrame某一列的值来选择具体的某一行方法
2018/07/03 Python
opencv3/C++ 平面对象识别&透视变换方式
2019/12/11 Python
使用Keras实现Tensor的相乘和相加代码
2020/06/18 Python
python的json包位置及用法总结
2020/06/21 Python
图片上传插件ImgUploadJS:用HTML5 File API 实现截图粘贴上传、拖拽上传
2016/01/20 HTML / CSS
SheIn俄罗斯:时尚女装网上商店
2017/02/28 全球购物
一套C++笔试题面试题
2012/06/06 面试题
怎么写好自荐信
2013/10/30 职场文书
毕业生代领毕业材料的授权委托书
2014/09/29 职场文书
幼儿园小班教育随笔
2015/08/14 职场文书
Python字典和列表性能之间的比较
2021/06/07 Python
MySQL 数据表操作
2022/05/04 MySQL