python+pandas+时间、日期以及时间序列处理方法


Posted in Python onJuly 10, 2018

先简单的了解下日期和时间数据类型及工具

python标准库包含于日期(date)和时间(time)数据的数据类型,datetime、time以及calendar模块会被经常用到。

datetime以毫秒形式存储日期和时间,datetime.timedelta表示两个datetime对象之间的时间差。

给datetime对象加上或减去一个或多个timedelta,会产生一个新的对象

from datetime import datetime
from datetime import timedelta
now = datetime.now()
now
datetime.datetime(2017, 6, 27, 15, 56, 56, 167000)
datetime参数:datetime(year, month, day[, hour[, minute[, second[, microsecond[,tzinfo]]]]])
delta = now - datetime(2017,6,27,10,10,10,10)
delta
datetime.timedelta(0, 20806, 166990)
delta.days
 0
delta.seconds
 20806
delta.microseconds
 166990

只有这三个参数了!

datetime模块中的数据类型

类型 说明
date 以公历形式存储日历日期(年、月、日)
time 将时间存储为时、分、秒、毫秒
datetime 存储日期和时间
timedelta 表示两个datetime值之间的差(日、秒、毫秒)

字符串和datetime的相互转换

1)python标准库函数

日期转换成字符串:利用str 或strftime

字符串转换成日期:datetime.strptime

stamp = datetime(2017,6,27)
str(stamp)
 '2017-06-27 00:00:00'
stamp.strftime('%y-%m-%d')#%Y是4位年,%y是2位年
 '17-06-27'
#对多个时间进行解析成字符串
date = ['2017-6-26','2017-6-27']
datetime2 = [datetime.strptime(x,'%Y-%m-%d') for x in date]
datetime2
[datetime.datetime(2017, 6, 26, 0, 0), datetime.datetime(2017, 6, 27, 0, 0)]

2)第三方库dateutil.parser的时间解析函数

from dateutil.parser import parse
parse('2017-6-27')
 datetime.datetime(2017, 6, 27, 0, 0)
parse('27/6/2017',dayfirst =True)
 datetime.datetime(2017, 6, 27, 0, 0)

3)pandas处理成组日期

pandas通常用于处理成组日期,不管这些日期是DataFrame的轴索引还是列,to_datetime方法可以解析多种不同的日期表示形式。

date
 ['2017-6-26', '2017-6-27']
import pandas as pd
pd.to_datetime(date)
 DatetimeIndex(['2017-06-26', '2017-06-27'], dtype='datetime64[ns]', freq=None)

datetime 格式定义

代码 说明
%Y 4位数的年
%y 2位数的年
%m 2位数的月[01,12]
%d 2位数的日[01,31]
%H 时(24小时制)[00,23]
%l 时(12小时制)[01,12]
%M 2位数的分[00,59]
%S 秒[00,61]有闰秒的存在
%w 用整数表示的星期几[0(星期天),6]
%F %Y-%m-%d简写形式例如,2017-06-27
%D %m/%d/%y简写形式

pandas时间序列基础以及时间、日期处理

pandas最基本的时间序列类型就是以时间戳(时间点)(通常以python字符串或datetime对象表示)为索引的Series:

dates = ['2017-06-20','2017-06-21',\
  '2017-06-22','2017-06-23','2017-06-24','2017-06-25','2017-06-26','2017-06-27']
import numpy as np
ts = pd.Series(np.random.randn(8),index = pd.to_datetime(dates))
ts
 2017-06-20 0.788811
 2017-06-21 0.372555
 2017-06-22 0.009967
 2017-06-23 -1.024626
 2017-06-24 0.981214
 2017-06-25 0.314127
 2017-06-26 -0.127258
 2017-06-27 1.919773
 dtype: float64
ts.index
 DatetimeIndex(['2017-06-20', '2017-06-21', '2017-06-22', '2017-06-23',
   '2017-06-24', '2017-06-25', '2017-06-26', '2017-06-27'],
   dtype='datetime64[ns]', freq=None)

pandas不同索引的时间序列之间的算术运算会自动按日期对齐

ts[::2]#从前往后每隔两个取数据
 2017-06-20 0.788811
 2017-06-22 0.009967
 2017-06-24 0.981214
 2017-06-26 -0.127258
 dtype: float64
ts[::-2]#从后往前逆序每隔两个取数据
 2017-06-27 1.919773
 2017-06-25 0.314127
 2017-06-23 -1.024626
 2017-06-21 0.372555
 dtype: float64
ts + ts[::2]#自动数据对齐
 2017-06-20 1.577621
 2017-06-21  NaN
 2017-06-22 0.019935
 2017-06-23  NaN
 2017-06-24 1.962429
 2017-06-25  NaN
 2017-06-26 -0.254516
 2017-06-27  NaN
 dtype: float64

索引为日期的Series和DataFrame数据的索引、选取以及子集构造

方法:

1).index[number_int]

2)[一个可以被解析为日期的字符串]

3)对于,较长的时间序列,只需传入‘年'或‘年月'可返回对应的数据切片

4)通过时间范围进行切片索引

ts
 2017-06-20 0.788811
 2017-06-21 0.372555
 2017-06-22 0.009967
 2017-06-23 -1.024626
 2017-06-24 0.981214
 2017-06-25 0.314127
 2017-06-26 -0.127258
 2017-06-27 1.919773
 dtype: float64


ts[ts.index[2]]
 0.0099673896063391908
ts['2017-06-21']#传入可以被解析成日期的字符串
 0.37255538918121028
ts['21/06/2017']
 0.37255538918121028
ts['20170621']
 0.37255538918121028
ts['2017-06']#传入年或年月
 2017-06-20 0.788811
 2017-06-21 0.372555
 2017-06-22 0.009967
 2017-06-23 -1.024626
 2017-06-24 0.981214
 2017-06-25 0.314127
 2017-06-26 -0.127258
 2017-06-27 1.919773
 dtype: float64


ts['2017-06-20':'2017-06-23']#时间范围进行切片
 2017-06-20 0.788811
 2017-06-21 0.372555
 2017-06-22 0.009967
 2017-06-23 -1.024626
 dtype: float64

带有重复索引的时间序列

1).index.is_unique检查索引日期是否是唯一的

2)对非唯一时间戳的数据进行聚合,通过groupby,并传入level = 0(索引的唯一一层)

dates = pd.DatetimeIndex(['2017/06/01','2017/06/02','2017/06/02','2017/06/02','2017/06/03'])
dates
 DatetimeIndex(['2017-06-01', '2017-06-02', '2017-06-02', '2017-06-02',
   '2017-06-03'],
   dtype='datetime64[ns]', freq=None)

dup_ts = pd.Series(np.arange(5),index = dates)
dup_ts
 2017-06-01 0
 2017-06-02 1
 2017-06-02 2
 2017-06-02 3
 2017-06-03 4
 dtype: int32

dup_ts.index.is_unique
 False
dup_ts['2017-06-02']
 2017-06-02 1
 2017-06-02 2
 2017-06-02 3
 dtype: int32

grouped = dup_ts.groupby(level=0).mean()
grouped
 2017-06-01 0
 2017-06-02 2
 2017-06-03 4
 dtype: int32

dup_df = pd.DataFrame(np.arange(10).reshape((5,2)),index = dates )
dup_df

0 1
2017-06-01 0 1
2017-06-02 2 3
2017-06-02 4 5
2017-06-02 6 7
2017-06-03 8 9
grouped_df = dup_df.groupby(level=0).mean()##针对DataFrame
grouped_df

0 1
2017-06-01 0 1
2017-06-02 4 5
2017-06-03 8 9

总结

该篇博客主要内容:

1)字符串、日期的转换方法

2)日期和时间的主要python,datetime、timedelta、pandas.to_datetime等

3)以时间为索引的Series和DataFrame的索引、切片

4)带有重复时间索引时的索引,.groupby(level=0)应用

以上这篇python+pandas+时间、日期以及时间序列处理方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python目录操作之python遍历文件夹后将结果存储为xml
Jan 27 Python
Python中time模块与datetime模块在使用中的不同之处
Nov 24 Python
python实现发送和获取手机短信验证码
Jan 15 Python
全面了解python中的类,对象,方法,属性
Sep 11 Python
Python实现类的创建与使用方法示例
Jul 25 Python
python2.7安装图文教程
Mar 13 Python
详解Python中的分组函数groupby和itertools)
Jul 11 Python
对python中的iter()函数与next()函数详解
Oct 18 Python
在python中利用try..except来代替if..else的用法
Dec 19 Python
python继承threading.Thread实现有返回值的子类实例
May 02 Python
基于SQLAlchemy实现操作MySQL并执行原生sql语句
Jun 10 Python
python IP地址转整数
Nov 20 Python
使用Python的Dataframe取两列时间值相差一年的所有行方法
Jul 10 #Python
Python Dataframe 指定多列去重、求差集的方法
Jul 10 #Python
Python实现对文件进行单词划分并去重排序操作示例
Jul 10 #Python
python3中函数参数的四种简单用法
Jul 09 #Python
python3学习之Splash的安装与实例教程
Jul 09 #Python
Python基于sklearn库的分类算法简单应用示例
Jul 09 #Python
Python不使用int()函数把字符串转换为数字的方法
Jul 09 #Python
You might like
php广告加载类用法实例
2014/09/23 PHP
PHP的Laravel框架中使用AdminLTE模板来编写网站后台界面
2016/03/21 PHP
php getcwd与dirname(__FILE__)区别详解
2016/09/24 PHP
php实现跨域提交form表单的方法【2种方法】
2016/10/17 PHP
ThinkPHP Where 条件中常用表达式示例(详解)
2017/03/31 PHP
Jquery 最近浏览过的商品的功能实现代码
2010/05/14 Javascript
jQuery中filter(),not(),split()使用方法
2010/07/06 Javascript
JavaScript面向对象(极简主义法minimalist approach)
2012/07/17 Javascript
js控制href内容的连接内容的变化示例
2014/04/30 Javascript
实例讲解JQuery中this和$(this)区别
2014/12/08 Javascript
JQuery自适应窗口大小导航菜单附源码下载
2015/09/01 Javascript
微信小程序搜索组件wxSearch实例详解
2017/06/08 Javascript
jQuery绑定事件方法及区别(bind,click,on,live,one)
2017/08/14 jQuery
初学者AngularJS的环境搭建过程
2017/10/27 Javascript
mui back 返回刷新页面的实例
2017/12/06 Javascript
jQuery中的$是什么意思及 $. 和 $().的区别
2018/04/20 jQuery
Vue2实时监听表单变化的示例讲解
2018/08/30 Javascript
VSCode Vue开发推荐插件和VSCode快捷键(小结)
2020/08/08 Javascript
[01:14]2014DOTA2展望TI 剑指西雅图newbee战队专访
2014/06/30 DOTA
python访问sqlserver示例
2014/02/10 Python
在Python中操作字典之clear()方法的使用
2015/05/21 Python
简单介绍Python中的readline()方法的使用
2015/05/24 Python
Python3.6 Schedule模块定时任务(实例讲解)
2017/11/09 Python
python爬虫面试宝典(常见问题)
2018/03/02 Python
python 一个figure上显示多个图像的实例
2019/07/08 Python
python三引号如何输入
2020/07/06 Python
python解压zip包中文乱码解决方法
2020/11/27 Python
英国在线药房:Chemist.co.uk
2019/03/26 全球购物
OSPREY LONDON官网:英国本土皮具品牌
2019/05/31 全球购物
一些Unix笔试题和面试题
2013/01/22 面试题
创伤外科专业推荐信范文
2013/11/19 职场文书
女子职高个人自荐书
2014/02/01 职场文书
创建绿色学校先进个人材料
2014/08/20 职场文书
鲁滨逊漂流记读书笔记
2015/06/26 职场文书
2020年元旦晚会策划书模板
2019/12/30 职场文书
nginx rewrite功能使用场景分析
2022/05/30 Servers