Python基于sklearn库的分类算法简单应用示例


Posted in Python onJuly 09, 2018

本文实例讲述了Python基于sklearn库的分类算法简单应用。分享给大家供大家参考,具体如下:

scikit-learn已经包含在Anaconda中。也可以在官方下载源码包进行安装。本文代码里封装了如下机器学习算法,我们修改数据加载函数,即可一键测试:

# coding=gbk
'''
Created on 2016年6月4日
@author: bryan
'''
import time
from sklearn import metrics
import pickle as pickle
import pandas as pd
# Multinomial Naive Bayes Classifier
def naive_bayes_classifier(train_x, train_y):
  from sklearn.naive_bayes import MultinomialNB
  model = MultinomialNB(alpha=0.01)
  model.fit(train_x, train_y)
  return model
# KNN Classifier
def knn_classifier(train_x, train_y):
  from sklearn.neighbors import KNeighborsClassifier
  model = KNeighborsClassifier()
  model.fit(train_x, train_y)
  return model
# Logistic Regression Classifier
def logistic_regression_classifier(train_x, train_y):
  from sklearn.linear_model import LogisticRegression
  model = LogisticRegression(penalty='l2')
  model.fit(train_x, train_y)
  return model
# Random Forest Classifier
def random_forest_classifier(train_x, train_y):
  from sklearn.ensemble import RandomForestClassifier
  model = RandomForestClassifier(n_estimators=8)
  model.fit(train_x, train_y)
  return model
# Decision Tree Classifier
def decision_tree_classifier(train_x, train_y):
  from sklearn import tree
  model = tree.DecisionTreeClassifier()
  model.fit(train_x, train_y)
  return model
# GBDT(Gradient Boosting Decision Tree) Classifier
def gradient_boosting_classifier(train_x, train_y):
  from sklearn.ensemble import GradientBoostingClassifier
  model = GradientBoostingClassifier(n_estimators=200)
  model.fit(train_x, train_y)
  return model
# SVM Classifier
def svm_classifier(train_x, train_y):
  from sklearn.svm import SVC
  model = SVC(kernel='rbf', probability=True)
  model.fit(train_x, train_y)
  return model
# SVM Classifier using cross validation
def svm_cross_validation(train_x, train_y):
  from sklearn.grid_search import GridSearchCV
  from sklearn.svm import SVC
  model = SVC(kernel='rbf', probability=True)
  param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]}
  grid_search = GridSearchCV(model, param_grid, n_jobs = 1, verbose=1)
  grid_search.fit(train_x, train_y)
  best_parameters = grid_search.best_estimator_.get_params()
  for para, val in list(best_parameters.items()):
    print(para, val)
  model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True)
  model.fit(train_x, train_y)
  return model
def read_data(data_file):
  data = pd.read_csv(data_file)
  train = data[:int(len(data)*0.9)]
  test = data[int(len(data)*0.9):]
  train_y = train.label
  train_x = train.drop('label', axis=1)
  test_y = test.label
  test_x = test.drop('label', axis=1)
  return train_x, train_y, test_x, test_y
if __name__ == '__main__':
  data_file = "H:\\Research\\data\\trainCG.csv"
  thresh = 0.5
  model_save_file = None
  model_save = {}
  test_classifiers = ['NB', 'KNN', 'LR', 'RF', 'DT', 'SVM','SVMCV', 'GBDT']
  classifiers = {'NB':naive_bayes_classifier,
         'KNN':knn_classifier,
          'LR':logistic_regression_classifier,
          'RF':random_forest_classifier,
          'DT':decision_tree_classifier,
         'SVM':svm_classifier,
        'SVMCV':svm_cross_validation,
         'GBDT':gradient_boosting_classifier
  }
  print('reading training and testing data...')
  train_x, train_y, test_x, test_y = read_data(data_file)
  for classifier in test_classifiers:
    print('******************* %s ********************' % classifier)
    start_time = time.time()
    model = classifiers[classifier](train_x, train_y)
    print('training took %fs!' % (time.time() - start_time))
    predict = model.predict(test_x)
    if model_save_file != None:
      model_save[classifier] = model
    precision = metrics.precision_score(test_y, predict)
    recall = metrics.recall_score(test_y, predict)
    print('precision: %.2f%%, recall: %.2f%%' % (100 * precision, 100 * recall))
    accuracy = metrics.accuracy_score(test_y, predict)
    print('accuracy: %.2f%%' % (100 * accuracy))
  if model_save_file != None:
    pickle.dump(model_save, open(model_save_file, 'wb'))

测试结果如下:

reading training and testing data...
******************* NB ********************
training took 0.004986s!
precision: 78.08%, recall: 71.25%
accuracy: 74.17%
******************* KNN ********************
training took 0.017545s!
precision: 97.56%, recall: 100.00%
accuracy: 98.68%
******************* LR ********************
training took 0.061161s!
precision: 89.16%, recall: 92.50%
accuracy: 90.07%
******************* RF ********************
training took 0.040111s!
precision: 96.39%, recall: 100.00%
accuracy: 98.01%
******************* DT ********************
training took 0.004513s!
precision: 96.20%, recall: 95.00%
accuracy: 95.36%
******************* SVM ********************
training took 0.242145s!
precision: 97.53%, recall: 98.75%
accuracy: 98.01%
******************* SVMCV ********************
Fitting 3 folds for each of 14 candidates, totalling 42 fits
[Parallel(n_jobs=1)]: Done  42 out of  42 | elapsed:    6.8s finished
probability True
verbose False
coef0 0.0
degree 3
tol 0.001
shrinking True
cache_size 200
gamma 0.001
max_iter -1
C 1000
decision_function_shape None
random_state None
class_weight None
kernel rbf
training took 7.434668s!
precision: 98.75%, recall: 98.75%
accuracy: 98.68%
******************* GBDT ********************
training took 0.521916s!
precision: 97.56%, recall: 100.00%
accuracy: 98.68%

希望本文所述对大家Python程序设计有所帮助。

Python 相关文章推荐
python基于queue和threading实现多线程下载实例
Oct 08 Python
使用Python编写一个在Linux下实现截图分享的脚本的教程
Apr 24 Python
python实现简单中文词频统计示例
Nov 08 Python
python实现微信每日一句自动发送给喜欢的人
Apr 29 Python
python中单下划线(_)和双下划线(__)的特殊用法
Aug 29 Python
wxPython:python首选的GUI库实例分享
Oct 05 Python
python中从for循环延申到推导式的具体使用
Nov 29 Python
Python3 A*寻路算法实现方式
Dec 24 Python
Tensorflow之梯度裁剪的实现示例
Mar 08 Python
Django权限设置及验证方式
May 13 Python
Python 中如何写注释
Aug 28 Python
python工具快速为音视频自动生成字幕(使用说明)
Jan 27 Python
Python不使用int()函数把字符串转换为数字的方法
Jul 09 #Python
python中ASCII码和字符的转换方法
Jul 09 #Python
python中ASCII码字符与int之间的转换方法
Jul 09 #Python
Python 十六进制整数与ASCii编码字符串相互转换方法
Jul 09 #Python
python 以16进制打印输出的方法
Jul 09 #Python
python爬虫之urllib3的使用示例
Jul 09 #Python
机器学习之KNN算法原理及Python实现方法详解
Jul 09 #Python
You might like
PHP simplexml_import_dom()函数讲解
2019/02/03 PHP
php高性能日志系统 seaslog 的安装与使用方法分析
2020/02/29 PHP
Js 回车换行处理的办法及replace方法应用
2013/01/24 Javascript
JavaScript中奇葩的假值示例应用
2014/03/11 Javascript
js的参数有长度限制吗?发现不能超过2083个字符
2014/04/20 Javascript
js判断一个字符串是否包含一个子串的方法
2015/01/26 Javascript
JavaScript实现将数组中所有元素连接成一个字符串的方法
2015/04/06 Javascript
简要了解jQuery移动web开发的响应式布局设计
2015/12/04 Javascript
jQuery实现form表单元素序列化为json对象的方法
2015/12/09 Javascript
nodejs加密Crypto的实例代码
2016/07/07 NodeJs
Node.js读写文件之批量替换图片的实现方法
2016/09/07 Javascript
如何理解Vue的render函数的具体用法
2017/08/30 Javascript
详解Vue SPA项目优化小记
2018/07/03 Javascript
详解React native fetch遇到的坑
2018/08/30 Javascript
微信小程序生成分享海报方法(附带二维码生成)
2019/03/29 Javascript
Express结合Webpack的全栈自动刷新
2019/05/23 Javascript
如何在Angular8.0下使用ngx-translate进行国际化配置
2019/07/24 Javascript
python调用短信猫控件实现发短信功能实例
2014/07/04 Python
Python中下划线的使用方法
2015/03/27 Python
详解Python中的序列化与反序列化的使用
2015/06/30 Python
Python实现对字符串的加密解密方法示例
2017/04/29 Python
详解 Python 与文件对象共事的实例
2017/09/11 Python
Python分析彩票记录并预测中奖号码过程详解
2019/07/09 Python
对Django中的权限和分组管理实例讲解
2019/08/16 Python
Flask中jinja2的继承实现方法及实例
2021/03/03 Python
pytorch 把图片数据转化成tensor的操作
2021/03/04 Python
深入浅析css3 border-image边框图像详解
2015/11/24 HTML / CSS
日本著名的平价时尚女性购物网站:Fifth
2016/08/24 全球购物
英国鹦鹉店:Parrot Essentials
2018/12/03 全球购物
第一批党的群众路线教育实践活动工作总结
2014/03/03 职场文书
同学会主持词
2014/03/18 职场文书
高三毕业评语
2014/12/31 职场文书
党员争先创优承诺书
2015/01/20 职场文书
病人慰问信范文
2015/02/15 职场文书
一年级语文教学随笔
2015/08/14 职场文书
话题作文之财富(600字)
2019/12/03 职场文书