python分治法求二维数组局部峰值方法


Posted in Python onApril 03, 2018

题目的意思大致是在一个n*m的二维数组中,找到一个局部峰值。峰值要求大于相邻的四个元素(数组边界以外视为负无穷),比如最后我们找到峰值A[j][i],则有A[j][i] > A[j+1][i] && A[j][i] > A[j-1][i] && A[j][i] > A[j][i+1] && A[j][i] > A[j][i-1]。返回该峰值的坐标和值。

当然,最简单直接的方法就是遍历所有数组元素,判断是否为峰值,时间复杂度为O(n^2)

再优化一点求每一行(列)的最大值,再通过二分法找最大值列的峰值(具体方法可见一维数组求峰值),这种算法时间复杂度为O(logn)

这里讨论的是一种复杂度为O(n)的算法,算法思路分为以下几步:

1、找“田”字。包括外围的四条边和中间横竖两条边(图中绿色部分),比较其大小,找到最大值的位置。(图中的7)

python分治法求二维数组局部峰值方法

2、找到田字中最大值后,判断它是不是局部峰值,如果是返回该坐标,如果不是,记录找到相邻四个点中最大值坐标。通过该坐标所在的象限缩小范围,继续比较下一个田字

python分治法求二维数组局部峰值方法

3、当范围缩小到3*3时必定会找到局部峰值(也可能之前就找到了)

关于为什么我们选择的范围内一定存在峰值,大家可以这样想,首先我们有一个圈,我们已知有圈内至少有一个元素大于这个圈所有的元素,那么,是不是这个圈中一定有一个最大值?

可能说得有点绕,但是多想想应该能够理解,也可以用数学的反证法来证明。

算法我们理解后接下来就是代码实现了,这里我用的语言是python(初学python,可能有些用法上不够简洁请见谅),先上代码:

import numpy as np
def max_sit(*n):     #返回最大元素的位置
 temp = 0
 sit = 0
 for i in range(len(n)):
  if(n[i]>temp):
   temp = n[i]
   sit = i
 return sit
def dp(s1,s2,e1,e2):
 m1 = int((e1-s1)/2)+s1   #row
 m2 = int((e2-s1)/2)+s2   #col
 nub = e1-s1
 temp = 0
 sit_row = 0
 sit_col = 0
 for i in range(nub):
  t = max_sit(list[s1][s2+i],     #第一排
     list[m1][s2+i],     #中间排
     list[e1][s2+i],     #最后排
     list[s1+i][s2],     #第一列
     list[s1+i][m2],     #中间列
     list[s1+i][e2],     #最后列
     temp)
  if(t==6):
   pass
  elif(t==0):
   temp = list[s1][s2+i]
   sit_row = s1
   sit_col = s2+i
  elif(t==1):
   temp = list[m1][s2+i]
   sit_row = m1
   sit_col = s2+i
  elif(t==2):
   temp = list[e1][s2+i]
   sit_row = e1
   sit_col = s2+i
  elif(t==3):
   temp = list[s1+i][s2]
   sit_row = s1+i
   sit_row = s2
  elif(t==4):
   temp = list[s1+i][m2]
   sit_row = s1+i
   sit_col = m2
  elif(t==5):
   temp = list[s1+i][e2]
   sit_row = s1+i
   sit_col = m2
 t = max_sit(list[sit_row][sit_col],   #中
    list[sit_row-1][sit_col],  #上
    list[sit_row+1][sit_col],  #下
    list[sit_row][sit_col-1],  #左
    list[sit_row][sit_col+1])  #右
 if(t==0):
  return [sit_row-1,sit_col-1]
 elif(t==1):
  sit_row-=1
 elif(t==2):
  sit_row+=1
 elif(t==3):
  sit_col-=1
 elif(t==4):
  sit_col+=1
 if(sit_row<m1):
  e1 = m1
 else:
  s1 = m1
 if(sit_col<m2):
  e2 = m2
 else:
  s2 = m2
 return dp(s1,s2,e1,e2)
f = open("demo.txt","r")
list = f.read()
list = list.split("\n")       #对行进行切片
list = ["0 "*len(list)]+list+["0 "*len(list)] #加上下的围墙
for i in range(len(list)):      #对列进行切片
 list[i] = list[i].split()
 list[i] = ["0"]+list[i]+["0"]    #加左右的围墙
list = np.array(list).astype(np.int32)
row_n = len(list)
col_n = len(list[0])
ans_sit = dp(0,0,row_n-1,col_n-1)
print("找到峰值点位于:",ans_sit)
print("该峰值点大小为:",list[ans_sit[0]+1,ans_sit[1]+1])
f.close()

首先我的输入写在txt文本文件里,通过字符串转换变为二维数组,具体转换过程可以看我上一篇博客——python中字符串转换为二维数组。(需要注意的是如果在windows环境中split后的列表没有空尾巴,所以不用加list.pop()这句话)。有的变动是我在二维数组四周加了“0”的围墙。加围墙可以再我们判断峰值的时候不用考虑边界问题。

max_sit(*n)函数用于找到多个值中最大值的位置,返回其位置,python的内构的max函数只能返回最大值,所以还是需要自己写,*n表示不定长参数,因为我需要在比较田和十(判断峰值)都用到这个函数

def max_sit(*n):     #返回最大元素的位置
 temp = 0
 sit = 0
 for i in range(len(n)):
  if(n[i]>temp):
   temp = n[i]
   sit = i
 return sit

dp(s1,s2,e1,e2)函数中四个参数的分别可看为startx,starty,endx,endy。即我们查找范围左上角和右下角的坐标值。

m1,m2分别是row 和col的中间值,也就是田字的中间。

def dp(s1,s2,e1,e2): 
 m1 = int((e1-s1)/2)+s1   #row 
 m2 = int((e2-s1)/2)+s2   #col

依次比较3行3列中的值找到最大值,注意这里要求二维数组为正方形,如果为矩形需要做调整

for i in range(nub):
  t = max_sit(list[s1][s2+i],     #第一排
     list[m1][s2+i],     #中间排
     list[e1][s2+i],     #最后排
     list[s1+i][s2],     #第一列
     list[s1+i][m2],     #中间列
     list[s1+i][e2],     #最后列
     temp)
  if(t==6):
   pass
  elif(t==0):
   temp = list[s1][s2+i]
   sit_row = s1
   sit_col = s2+i
  elif(t==1):
   temp = list[m1][s2+i]
   sit_row = m1
   sit_col = s2+i
  elif(t==2):
   temp = list[e1][s2+i]
   sit_row = e1
   sit_col = s2+i
  elif(t==3):
   temp = list[s1+i][s2]
   sit_row = s1+i
   sit_row = s2
  elif(t==4):
   temp = list[s1+i][m2]
   sit_row = s1+i
   sit_row = m2
  elif(t==5):
   temp = list[s1+i][e2]
   sit_row = s1+i
   sit_row = m2

判断田字中最大值是不是峰值,并找不出相邻最大值

t = max_sit(list[sit_row][sit_col],   #中 
    list[sit_row-1][sit_col],  #上 
    list[sit_row+1][sit_col],  #下 
    list[sit_row][sit_col-1],  #左 
    list[sit_row][sit_col+1])  #右 
 if(t==0): 
  return [sit_row-1,sit_col-1] 
 elif(t==1): 
  sit_row-=1 
 elif(t==2): 
  sit_row+=1 
 elif(t==3): 
  sit_col-=1 
 elif(t==4): 
  sit_col+=1

缩小范围,递归求解

if(sit_row<m1): 
  e1 = m1 
 else: 
  s1 = m1 
 if(sit_col<m2): 
  e2 = m2 
 else: 
  s2 = m2 
 
 return dp(s1,s2,e1,e2)

好了,到这里代码基本分析完了。如果还有不清楚的地方欢迎下方留言。

除了这种算法外,我也写一种贪心算法来求解这道题,只可惜最坏的情况下算法复杂度还是O(n^2),QAQ。

大体的思路就是从中间位置起找相邻4个点中最大的点,继续把该点来找相邻最大点,最后一定会找到一个峰值点,有兴趣的可以看一下,上代码:

#!/usr/bin/python3
def dp(n):
 temp = (str[n],str[n-9],str[n-1],str[n+1],str[n+9])  #中 上 左 右 下
 sit = temp.index(max(temp))
 if(sit==0):
  return str[n]
 elif(sit==1):
  return dp(n-9)
 elif(sit==2):
  return dp(n-1)
 elif(sit==3):
  return dp(n+1)
 else:
  return dp(n+9)
f = open("/home/nancy/桌面/demo.txt","r")
list = f.read()
list = list.replace(" ","").split()  #转换为列表
row = len(list)
col = len(list[0])
str="0"*(col+3)
for x in list:      #加围墙 二维变一维
 str+=x+"00"
str+="0"*(col+1)
mid = int(len(str)/2)
print(str,mid)
p = dp(mid)
print (p)
f.close()

以上这篇python分治法求二维数组局部峰值方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python获取android设备的GPS信息脚本分享
Mar 06 Python
Django的session中对于用户验证的支持
Jul 23 Python
理论讲解python多进程并发编程
Feb 09 Python
用python标准库difflib比较两份文件的异同详解
Nov 16 Python
解决新django中的path不能使用正则表达式的问题
Dec 18 Python
在python 中实现运行多条shell命令
Jan 07 Python
pytorch实现从本地加载 .pth 格式模型
Feb 14 Python
浅谈Django前端后端值传递问题
Jul 15 Python
PyCharm2019 安装和配置教程详解附激活码
Jul 31 Python
Python基于pyjnius库实现访问java类
Jul 31 Python
python语言实现贪吃蛇游戏
Nov 13 Python
Python 的 sum() Pythonic 的求和方法详细
Oct 16 Python
Python变量赋值的秘密分享
Apr 03 #Python
python中字符串变二维数组的实例讲解
Apr 03 #Python
numpy找出array中的最大值,最小值实例
Apr 03 #Python
Python获取二维矩阵每列最大值的方法
Apr 03 #Python
Python中的并发处理之asyncio包使用的详解
Apr 03 #Python
图解Python变量与赋值
Apr 03 #Python
Python实现的HMacMD5加密算法示例
Apr 03 #Python
You might like
浅析php header 跳转
2013/06/17 PHP
PHP回溯法解决0-1背包问题实例分析
2015/03/23 PHP
Yii2学习笔记之汉化yii设置表单的描述(属性标签attributeLabels)
2017/02/07 PHP
Yii2 队列 shmilyzxt/yii2-queue 简单概述
2017/08/02 PHP
javascript 读取图片文件的大小
2009/06/25 Javascript
JQuery 技巧和窍门整理(8个)
2010/04/22 Javascript
js中document.write使用过程中的一点疑问解答
2014/03/20 Javascript
使用JavaScript获取电池状态的方法
2014/05/03 Javascript
如何实现chrome浏览器关闭页面时弹出“确定要离开此面吗?”
2015/03/05 Javascript
jquery实现Li滚动时滚动条自动添加样式的方法
2015/08/10 Javascript
全面解析Bootstrap弹窗的实现方法
2015/12/01 Javascript
JavaScript实现使用Canvas绘制图形的基本教程
2016/10/27 Javascript
Node.js 实现简单小说爬虫实例
2016/11/18 Javascript
那些精彩的JavaScript代码片段
2017/01/12 Javascript
如何选择jQuery版本 1.x? 2.x? 3.x?
2017/04/01 jQuery
详解VUE 定义全局变量的几种实现方式
2017/06/01 Javascript
vue项目中的webpack-dev-sever配置方法
2017/12/14 Javascript
JS从非数组对象转数组的方法小结
2018/03/26 Javascript
总结javascript三元运算符知识点
2018/09/28 Javascript
JavaScript实现图片放大镜效果
2019/06/27 Javascript
使用localStorage替代cookie做本地存储
2019/09/25 Javascript
javascript 对象 与 prototype 原型用法实例分析
2019/11/11 Javascript
Node.js API详解之 readline模块用法详解
2020/05/22 Javascript
python 切片和range()用法说明
2013/03/24 Python
Python 多线程Threading初学教程
2017/08/22 Python
python写入并获取剪切板内容的实例
2018/05/31 Python
解决Python Matplotlib绘图数据点位置错乱问题
2020/05/16 Python
Python将字典转换为XML的方法
2020/08/01 Python
用Python自动清理系统垃圾的实现
2021/01/18 Python
韩国最大的购物网站:Gmarket
2019/06/20 全球购物
DOUGLAS荷兰:购买香水和化妆品
2020/10/24 全球购物
省三好学生申请材料
2014/01/22 职场文书
领导失职检讨书
2014/02/24 职场文书
2014年技术部工作总结
2014/12/12 职场文书
全陪导游词开场白
2015/05/29 职场文书
2016年植树节红领巾广播稿
2015/12/17 职场文书