Python实现八大排序算法


Posted in Python onAugust 13, 2016

如何用Python实现八大排序算法

1、插入排序
描述
插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为 O(n^2)。是稳定的排序方法。插入算法把要排序的数组分成两部分:第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插 入的位置),而第二部分就只包含这一个元素(即待插入元素)。在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中。
代码实现

def insert_sort(lists): 
  # 插入排序 
  count = len(lists) 
  for i in range(1, count): 
    key = lists[i] 
    j = i - 1 
    while j >= 0: 
      if lists[j] > key: 
        lists[j + 1] = lists[j] 
        lists[j] = key 
      j -= 1 
  return lists

2、希尔排序
描述 
希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因DL.Shell于 1959年提出而得名。 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分 成一组,算法便终止。 
代码实现

def shell_sort(lists): 
  # 希尔排序 
  count = len(lists) 
  step = 2 
  group = count / step 
  while group > 0: 
    for i in range(0, group): 
      j = i + group 
      while j < count: 
        k = j - group 
        key = lists[j] 
        while k >= 0: 
          if lists[k] > key: 
            lists[k + group] = lists[k] 
            lists[k] = key 
          k -= group 
        j += group 
    group /= step 
  return lists

3、冒泡排序
描述 
它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
代码实现

def bubble_sort(lists): 
  # 冒泡排序 
  count = len(lists) 
  for i in range(0, count): 
    for j in range(i + 1, count): 
      if lists[i] > lists[j]: 
        lists[i], lists[j] = lists[j], lists[i] 
  return lists

4、快速排序
描述 
通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。 
代码实现

def quick_sort(lists, left, right): 
  # 快速排序 
  if left >= right: 
    return lists 
  key = lists[left] 
  low = left 
  high = right 
  while left < right: 
    while left < right and lists[right] >= key: 
      right -= 1 
    lists[left] = lists[right] 
    while left < right and lists[left] <= key: 
      left += 1 
    lists[right] = lists[left] 
  lists[right] = key 
  quick_sort(lists, low, left - 1) 
  quick_sort(lists, left + 1, high) 
  return lists

5、直接选择排序
描述 
基本思想:第1趟,在待排序记录r1 ~ r[n]中选出最小的记录,将它与r1交换;第2趟,在待排序记录r2 ~ r[n]中选出最小的记录,将它与r2交换;以此类推,第i趟在待排序记录r[i] ~ r[n]中选出最小的记录,将它与r[i]交换,使有序序列不断增长直到全部排序完毕。
代码实现

def select_sort(lists): 
  # 选择排序 
  count = len(lists) 
  for i in range(0, count): 
    min = i 
    for j in range(i + 1, count): 
      if lists[min] > lists[j]: 
        min = j 
    lists[min], lists[i] = lists[i], lists[min] 
  return lists

6、堆排序
描述 
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元 素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] >= A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。 
代码实现

# 调整堆 
def adjust_heap(lists, i, size): 
  lchild = 2 * i + 1 
  rchild = 2 * i + 2 
  max = i 
  if i < size / 2: 
    if lchild < size and lists[lchild] > lists[max]: 
      max = lchild 
    if rchild < size and lists[rchild] > lists[max]: 
      max = rchild 
    if max != i: 
      lists[max], lists[i] = lists[i], lists[max] 
      adjust_heap(lists, max, size) 
 
# 创建堆 
def build_heap(lists, size): 
  for i in range(0, (size/2))[::-1]: 
    adjust_heap(lists, i, size) 
 
# 堆排序 
def heap_sort(lists): 
  size = len(lists) 
  build_heap(lists, size) 
  for i in range(0, size)[::-1]: 
    lists[0], lists[i] = lists[i], lists[0] 
    adjust_heap(lists, 0, i)

7、归并排序
描述 
归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一 个有序表,称为二路归并。 
归并过程为:比较a[i]和a[j]的大小,若a[i]≤a[j],则将第一个有序表中的元素a[i]复制到r[k]中,并令i和k分别加上1;否 则将第二个有序表中的元素a[j]复制到r[k]中,并令j和k分别加上1,如此循环下去,直到其中一个有序表取完,然后再将另一个有序表中剩余的元素复 制到r中从下标k到下标t的单元。归并排序的算法我们通常用递归实现,先把待排序区间[s,t]以中点二分,接着把左边子区间排序,再把右边子区间排序, 最后把左区间和右区间用一次归并操作合并成有序的区间[s,t]。 
代码实现

def merge(left, right): 
  i, j = 0, 0 
  result = [] 
  while i < len(left) and j < len(right): 
    if left[i] <= right[j]: 
      result.append(left[i]) 
      i += 1 
    else: 
      result.append(right[j]) 
      j += 1 
  result += left[i:] 
  result += right[j:] 
  return result 
 
def merge_sort(lists): 
  # 归并排序 
  if len(lists) <= 1: 
    return lists 
  num = len(lists) / 2 
  left = merge_sort(lists[:num]) 
  right = merge_sort(lists[num:]) 
  return merge(left, right)

8、基数排序
描述 
基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或bin sort,顾名思义,它是透过键值的部份资讯,将要排序的元素分配至某些“桶”中,藉以达到排序的作用,基数排序法是属于稳定性的排序,其时间复杂度为O (nlog(r)m),其中r为所采取的基数,而m为堆数,在某些时候,基数排序法的效率高于其它的稳定性排序法。
代码实现

import math 
def radix_sort(lists, radix=10): 
  k = int(math.ceil(math.log(max(lists), radix))) 
  bucket = [[] for i in range(radix)] 
  for i in range(1, k+1): 
    for j in lists: 
      bucket[j/(radix**(i-1)) % (radix**i)].append(j) 
    del lists[:] 
    for z in bucket: 
      lists += z 
      del z[:] 
  return lists

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python 2.6.6升级到python 2.7.x版本的方法
Oct 09 Python
使用Python脚本实现批量网站存活检测遇到问题及解决方法
Oct 11 Python
解决python3在anaconda下安装caffe失败的问题
Jun 15 Python
使用anaconda的pip安装第三方python包的操作步骤
Jun 11 Python
pandas.DataFrame删除/选取含有特定数值的行或列实例
Nov 07 Python
GitHub 热门:Python 算法大全,Star 超过 2 万
Apr 29 Python
Python列表的切片实例讲解
Aug 20 Python
python3文件复制、延迟文件复制任务的实现方法
Sep 02 Python
Python一行代码实现自动发邮件功能
May 30 Python
PyTorch 如何检查模型梯度是否可导
Jun 05 Python
python 判断文件或文件夹是否存在
Mar 18 Python
Python利用capstone实现反汇编
Apr 06 Python
详解Python如何获取列表(List)的中位数
Aug 12 #Python
Python抓取框架 Scrapy的架构
Aug 12 #Python
判断网页编码的方法python版
Aug 12 #Python
Python利用IPython提高开发效率
Aug 10 #Python
详解python如何调用C/C++底层库与互相传值
Aug 10 #Python
浅析python中的分片与截断序列
Aug 09 #Python
总结python爬虫抓站的实用技巧
Aug 09 #Python
You might like
使用数据库保存session的方法
2006/10/09 PHP
整理的一些实用WordPress后台MySQL操作命令
2013/01/07 PHP
PHP异常Parse error: syntax error, unexpected T_VAR错误解决方法
2014/05/06 PHP
PHP二维关联数组的遍历方式(实例讲解)
2017/10/18 PHP
网站被黑的假象--ARP欺骗之页面中加入一段js
2007/05/16 Javascript
使用jquery实现select添加实现后台权限添加的效果
2011/05/28 Javascript
js 判断脚本加载完毕的代码
2011/07/13 Javascript
将nodejs打包工具整合到鼠标右键的方法
2013/05/11 NodeJs
详解js私有作用域中创建特权方法
2016/01/25 Javascript
javascript运算符——逻辑运算符全面解析
2016/06/27 Javascript
轻松掌握JavaScript装饰者模式
2016/08/27 Javascript
JS判断form内所有表单是否为空的简单实例
2016/09/09 Javascript
详解Ubuntu安装angular-cli遇到的坑
2018/09/08 Javascript
详解小程序开发经验:多页面数据同步
2019/05/18 Javascript
countUp.js实现数字动态变化效果
2019/10/17 Javascript
p5.js临摹动态图形实现方法详解
2019/10/23 Javascript
Node.js控制台彩色输出的方法与原理实例详解
2019/12/01 Javascript
JS实现进度条动态加载特效
2020/03/25 Javascript
Vue 3.0中jsx语法的使用
2020/11/13 Javascript
[01:16:28]DOTA2-DPC中国联赛 正赛 iG vs Magma BO3 第二场 2月23日
2021/03/11 DOTA
Python中使用select模块实现非阻塞的IO
2015/02/03 Python
在Python的Django框架中使用通用视图的方法
2015/07/21 Python
python 字典中取值的两种方法小结
2018/08/02 Python
jupyter notebook的安装与使用详解
2020/05/18 Python
基于python实现操作git过程代码解析
2020/07/27 Python
美国新娘礼品店:The Paisley Box
2020/09/08 全球购物
PHP面试题集
2016/12/18 面试题
毕业生的自我鉴定
2013/10/29 职场文书
车间主管岗位职责
2013/11/14 职场文书
技术副厂长岗位职责
2013/12/26 职场文书
普罗米修斯教学反思
2014/02/06 职场文书
运动会稿件50字
2014/02/17 职场文书
医疗纠纷协议书
2014/04/16 职场文书
学习党的群众路线剖析材料
2014/10/09 职场文书
酒店优秀员工推荐信
2015/03/24 职场文书
Nginx设置HTTPS的方法步骤 443证书配置方法
2022/03/21 Servers