Python实现八大排序算法


Posted in Python onAugust 13, 2016

如何用Python实现八大排序算法

1、插入排序
描述
插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为 O(n^2)。是稳定的排序方法。插入算法把要排序的数组分成两部分:第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插 入的位置),而第二部分就只包含这一个元素(即待插入元素)。在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中。
代码实现

def insert_sort(lists): 
  # 插入排序 
  count = len(lists) 
  for i in range(1, count): 
    key = lists[i] 
    j = i - 1 
    while j >= 0: 
      if lists[j] > key: 
        lists[j + 1] = lists[j] 
        lists[j] = key 
      j -= 1 
  return lists

2、希尔排序
描述 
希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因DL.Shell于 1959年提出而得名。 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分 成一组,算法便终止。 
代码实现

def shell_sort(lists): 
  # 希尔排序 
  count = len(lists) 
  step = 2 
  group = count / step 
  while group > 0: 
    for i in range(0, group): 
      j = i + group 
      while j < count: 
        k = j - group 
        key = lists[j] 
        while k >= 0: 
          if lists[k] > key: 
            lists[k + group] = lists[k] 
            lists[k] = key 
          k -= group 
        j += group 
    group /= step 
  return lists

3、冒泡排序
描述 
它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
代码实现

def bubble_sort(lists): 
  # 冒泡排序 
  count = len(lists) 
  for i in range(0, count): 
    for j in range(i + 1, count): 
      if lists[i] > lists[j]: 
        lists[i], lists[j] = lists[j], lists[i] 
  return lists

4、快速排序
描述 
通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。 
代码实现

def quick_sort(lists, left, right): 
  # 快速排序 
  if left >= right: 
    return lists 
  key = lists[left] 
  low = left 
  high = right 
  while left < right: 
    while left < right and lists[right] >= key: 
      right -= 1 
    lists[left] = lists[right] 
    while left < right and lists[left] <= key: 
      left += 1 
    lists[right] = lists[left] 
  lists[right] = key 
  quick_sort(lists, low, left - 1) 
  quick_sort(lists, left + 1, high) 
  return lists

5、直接选择排序
描述 
基本思想:第1趟,在待排序记录r1 ~ r[n]中选出最小的记录,将它与r1交换;第2趟,在待排序记录r2 ~ r[n]中选出最小的记录,将它与r2交换;以此类推,第i趟在待排序记录r[i] ~ r[n]中选出最小的记录,将它与r[i]交换,使有序序列不断增长直到全部排序完毕。
代码实现

def select_sort(lists): 
  # 选择排序 
  count = len(lists) 
  for i in range(0, count): 
    min = i 
    for j in range(i + 1, count): 
      if lists[min] > lists[j]: 
        min = j 
    lists[min], lists[i] = lists[i], lists[min] 
  return lists

6、堆排序
描述 
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元 素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] >= A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。 
代码实现

# 调整堆 
def adjust_heap(lists, i, size): 
  lchild = 2 * i + 1 
  rchild = 2 * i + 2 
  max = i 
  if i < size / 2: 
    if lchild < size and lists[lchild] > lists[max]: 
      max = lchild 
    if rchild < size and lists[rchild] > lists[max]: 
      max = rchild 
    if max != i: 
      lists[max], lists[i] = lists[i], lists[max] 
      adjust_heap(lists, max, size) 
 
# 创建堆 
def build_heap(lists, size): 
  for i in range(0, (size/2))[::-1]: 
    adjust_heap(lists, i, size) 
 
# 堆排序 
def heap_sort(lists): 
  size = len(lists) 
  build_heap(lists, size) 
  for i in range(0, size)[::-1]: 
    lists[0], lists[i] = lists[i], lists[0] 
    adjust_heap(lists, 0, i)

7、归并排序
描述 
归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一 个有序表,称为二路归并。 
归并过程为:比较a[i]和a[j]的大小,若a[i]≤a[j],则将第一个有序表中的元素a[i]复制到r[k]中,并令i和k分别加上1;否 则将第二个有序表中的元素a[j]复制到r[k]中,并令j和k分别加上1,如此循环下去,直到其中一个有序表取完,然后再将另一个有序表中剩余的元素复 制到r中从下标k到下标t的单元。归并排序的算法我们通常用递归实现,先把待排序区间[s,t]以中点二分,接着把左边子区间排序,再把右边子区间排序, 最后把左区间和右区间用一次归并操作合并成有序的区间[s,t]。 
代码实现

def merge(left, right): 
  i, j = 0, 0 
  result = [] 
  while i < len(left) and j < len(right): 
    if left[i] <= right[j]: 
      result.append(left[i]) 
      i += 1 
    else: 
      result.append(right[j]) 
      j += 1 
  result += left[i:] 
  result += right[j:] 
  return result 
 
def merge_sort(lists): 
  # 归并排序 
  if len(lists) <= 1: 
    return lists 
  num = len(lists) / 2 
  left = merge_sort(lists[:num]) 
  right = merge_sort(lists[num:]) 
  return merge(left, right)

8、基数排序
描述 
基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或bin sort,顾名思义,它是透过键值的部份资讯,将要排序的元素分配至某些“桶”中,藉以达到排序的作用,基数排序法是属于稳定性的排序,其时间复杂度为O (nlog(r)m),其中r为所采取的基数,而m为堆数,在某些时候,基数排序法的效率高于其它的稳定性排序法。
代码实现

import math 
def radix_sort(lists, radix=10): 
  k = int(math.ceil(math.log(max(lists), radix))) 
  bucket = [[] for i in range(radix)] 
  for i in range(1, k+1): 
    for j in lists: 
      bucket[j/(radix**(i-1)) % (radix**i)].append(j) 
    del lists[:] 
    for z in bucket: 
      lists += z 
      del z[:] 
  return lists

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python正则表达式的使用范例详解
Aug 08 Python
状态机的概念和在Python下使用状态机的教程
Apr 11 Python
python采集百度百科的方法
Jun 05 Python
在Django的视图中使用数据库查询的方法
Jul 16 Python
Python3 循环语句(for、while、break、range等)
Nov 20 Python
Python中一些不为人知的基础技巧总结
May 19 Python
python创建文件时去掉非法字符的方法
Oct 31 Python
python爬虫 批量下载zabbix文档代码实例
Aug 21 Python
用Pelican搭建一个极简静态博客系统过程解析
Aug 22 Python
python Kmeans算法原理深入解析
Aug 23 Python
python 初始化一个定长的数组实例
Dec 02 Python
PyCharm下载和安装详细步骤
Dec 17 Python
详解Python如何获取列表(List)的中位数
Aug 12 #Python
Python抓取框架 Scrapy的架构
Aug 12 #Python
判断网页编码的方法python版
Aug 12 #Python
Python利用IPython提高开发效率
Aug 10 #Python
详解python如何调用C/C++底层库与互相传值
Aug 10 #Python
浅析python中的分片与截断序列
Aug 09 #Python
总结python爬虫抓站的实用技巧
Aug 09 #Python
You might like
新手配置 PHP 调试环境(IIS+PHP+MYSQL)
2007/01/10 PHP
PHP中用hash实现的数组
2011/07/17 PHP
如何用PHP实现插入排序?
2013/04/10 PHP
PHP、Nginx、Apache中禁止网页被iframe引用的方法
2020/10/01 PHP
PHP网页游戏学习之Xnova(ogame)源码解读(十三)
2014/06/26 PHP
详细解读PHP中接口的应用
2015/08/12 PHP
浅析PHP数据导出知识点
2018/02/17 PHP
safari,opera嵌入iframe页面cookie读取问题解决方法
2010/06/23 Javascript
新浪微博字数统计 textarea字数统计实现代码
2011/08/28 Javascript
JQuery操作iframe父页面与子页面的元素与方法(实例讲解)
2013/11/20 Javascript
Javascript 函数parseInt()转换时出现bug问题
2014/05/20 Javascript
浅谈Vue 初始化性能优化
2017/08/31 Javascript
Node.js学习之TCP/IP数据通讯(实例讲解)
2017/10/11 Javascript
微信小程序自定义select下拉选项框组件的实现代码
2018/08/28 Javascript
jquery多级树形下拉菜单的实例代码
2019/07/09 jQuery
JS实现悬浮球只在一侧滑动并且是横屏状态下
2020/08/19 Javascript
Vue3为什么这么快
2020/09/23 Javascript
vue自定义组件实现双向绑定
2021/01/13 Vue.js
[01:14]DOTA2亚洲邀请赛小组赛赛前花絮
2017/03/27 DOTA
基于python实现微信模板消息
2015/12/21 Python
python实现FTP服务器服务的方法
2017/04/11 Python
Python从文件中读取数据的方法讲解
2019/02/14 Python
Django ORM 查询管理器源码解析
2019/08/05 Python
python读取ini配置的类封装代码实例
2020/01/08 Python
python扫描线填充算法详解
2020/02/19 Python
让Django的BooleanField支持字符串形式的输入方式
2020/05/20 Python
德国奢侈品网上商城:Mytheresa
2016/08/24 全球购物
美国高级工作服品牌:Carhartt
2018/01/25 全球购物
周生生珠宝香港官网:Chow Sang Sang(香港及海外配送)
2019/09/05 全球购物
NYX Professional Makeup俄罗斯官网:世界知名的化妆品品牌
2019/12/26 全球购物
跟单文员岗位职责
2014/01/03 职场文书
酒店经理职责
2014/01/30 职场文书
幼儿园教师教学反思
2014/02/06 职场文书
个人自我剖析材料
2014/02/07 职场文书
Python 图片添加美颜效果
2022/04/28 Python
科学家研发出新型速效酶,可在 24 小时内降解塑料制品
2022/04/29 数码科技