Python实现八大排序算法


Posted in Python onAugust 13, 2016

如何用Python实现八大排序算法

1、插入排序
描述
插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为 O(n^2)。是稳定的排序方法。插入算法把要排序的数组分成两部分:第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插 入的位置),而第二部分就只包含这一个元素(即待插入元素)。在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中。
代码实现

def insert_sort(lists): 
  # 插入排序 
  count = len(lists) 
  for i in range(1, count): 
    key = lists[i] 
    j = i - 1 
    while j >= 0: 
      if lists[j] > key: 
        lists[j + 1] = lists[j] 
        lists[j] = key 
      j -= 1 
  return lists

2、希尔排序
描述 
希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因DL.Shell于 1959年提出而得名。 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分 成一组,算法便终止。 
代码实现

def shell_sort(lists): 
  # 希尔排序 
  count = len(lists) 
  step = 2 
  group = count / step 
  while group > 0: 
    for i in range(0, group): 
      j = i + group 
      while j < count: 
        k = j - group 
        key = lists[j] 
        while k >= 0: 
          if lists[k] > key: 
            lists[k + group] = lists[k] 
            lists[k] = key 
          k -= group 
        j += group 
    group /= step 
  return lists

3、冒泡排序
描述 
它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
代码实现

def bubble_sort(lists): 
  # 冒泡排序 
  count = len(lists) 
  for i in range(0, count): 
    for j in range(i + 1, count): 
      if lists[i] > lists[j]: 
        lists[i], lists[j] = lists[j], lists[i] 
  return lists

4、快速排序
描述 
通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。 
代码实现

def quick_sort(lists, left, right): 
  # 快速排序 
  if left >= right: 
    return lists 
  key = lists[left] 
  low = left 
  high = right 
  while left < right: 
    while left < right and lists[right] >= key: 
      right -= 1 
    lists[left] = lists[right] 
    while left < right and lists[left] <= key: 
      left += 1 
    lists[right] = lists[left] 
  lists[right] = key 
  quick_sort(lists, low, left - 1) 
  quick_sort(lists, left + 1, high) 
  return lists

5、直接选择排序
描述 
基本思想:第1趟,在待排序记录r1 ~ r[n]中选出最小的记录,将它与r1交换;第2趟,在待排序记录r2 ~ r[n]中选出最小的记录,将它与r2交换;以此类推,第i趟在待排序记录r[i] ~ r[n]中选出最小的记录,将它与r[i]交换,使有序序列不断增长直到全部排序完毕。
代码实现

def select_sort(lists): 
  # 选择排序 
  count = len(lists) 
  for i in range(0, count): 
    min = i 
    for j in range(i + 1, count): 
      if lists[min] > lists[j]: 
        min = j 
    lists[min], lists[i] = lists[i], lists[min] 
  return lists

6、堆排序
描述 
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元 素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] >= A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。 
代码实现

# 调整堆 
def adjust_heap(lists, i, size): 
  lchild = 2 * i + 1 
  rchild = 2 * i + 2 
  max = i 
  if i < size / 2: 
    if lchild < size and lists[lchild] > lists[max]: 
      max = lchild 
    if rchild < size and lists[rchild] > lists[max]: 
      max = rchild 
    if max != i: 
      lists[max], lists[i] = lists[i], lists[max] 
      adjust_heap(lists, max, size) 
 
# 创建堆 
def build_heap(lists, size): 
  for i in range(0, (size/2))[::-1]: 
    adjust_heap(lists, i, size) 
 
# 堆排序 
def heap_sort(lists): 
  size = len(lists) 
  build_heap(lists, size) 
  for i in range(0, size)[::-1]: 
    lists[0], lists[i] = lists[i], lists[0] 
    adjust_heap(lists, 0, i)

7、归并排序
描述 
归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一 个有序表,称为二路归并。 
归并过程为:比较a[i]和a[j]的大小,若a[i]≤a[j],则将第一个有序表中的元素a[i]复制到r[k]中,并令i和k分别加上1;否 则将第二个有序表中的元素a[j]复制到r[k]中,并令j和k分别加上1,如此循环下去,直到其中一个有序表取完,然后再将另一个有序表中剩余的元素复 制到r中从下标k到下标t的单元。归并排序的算法我们通常用递归实现,先把待排序区间[s,t]以中点二分,接着把左边子区间排序,再把右边子区间排序, 最后把左区间和右区间用一次归并操作合并成有序的区间[s,t]。 
代码实现

def merge(left, right): 
  i, j = 0, 0 
  result = [] 
  while i < len(left) and j < len(right): 
    if left[i] <= right[j]: 
      result.append(left[i]) 
      i += 1 
    else: 
      result.append(right[j]) 
      j += 1 
  result += left[i:] 
  result += right[j:] 
  return result 
 
def merge_sort(lists): 
  # 归并排序 
  if len(lists) <= 1: 
    return lists 
  num = len(lists) / 2 
  left = merge_sort(lists[:num]) 
  right = merge_sort(lists[num:]) 
  return merge(left, right)

8、基数排序
描述 
基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或bin sort,顾名思义,它是透过键值的部份资讯,将要排序的元素分配至某些“桶”中,藉以达到排序的作用,基数排序法是属于稳定性的排序,其时间复杂度为O (nlog(r)m),其中r为所采取的基数,而m为堆数,在某些时候,基数排序法的效率高于其它的稳定性排序法。
代码实现

import math 
def radix_sort(lists, radix=10): 
  k = int(math.ceil(math.log(max(lists), radix))) 
  bucket = [[] for i in range(radix)] 
  for i in range(1, k+1): 
    for j in lists: 
      bucket[j/(radix**(i-1)) % (radix**i)].append(j) 
    del lists[:] 
    for z in bucket: 
      lists += z 
      del z[:] 
  return lists

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python实现将不规范的英文名字首字母大写
Nov 15 Python
django 创建过滤器的实例详解
Aug 14 Python
对Python中列表和数组的赋值,浅拷贝和深拷贝的实例讲解
Jun 28 Python
Python socket 套接字实现通信详解
Aug 27 Python
Python高级编程之继承问题详解(super与mro)
Nov 19 Python
基于Django实现日志记录报错信息
Dec 17 Python
40行Python代码实现天气预报和每日鸡汤推送功能
Feb 27 Python
浅谈matplotlib.pyplot与axes的关系
Mar 06 Python
Keras设置以及获取权重的实现
Jun 19 Python
Pycharm无法打开双击没反应的问题及解决方案
Aug 17 Python
django中ImageField的使用详解
Dec 21 Python
MATLAB 如何求取离散点的曲率最大值
Apr 16 Python
详解Python如何获取列表(List)的中位数
Aug 12 #Python
Python抓取框架 Scrapy的架构
Aug 12 #Python
判断网页编码的方法python版
Aug 12 #Python
Python利用IPython提高开发效率
Aug 10 #Python
详解python如何调用C/C++底层库与互相传值
Aug 10 #Python
浅析python中的分片与截断序列
Aug 09 #Python
总结python爬虫抓站的实用技巧
Aug 09 #Python
You might like
无数据库的详细域名查询程序PHP版(4)
2006/10/09 PHP
PHP封装的一个支持HTML、JS、PHP重定向的多功能跳转函数
2014/06/19 PHP
php实现判断访问来路是否为搜索引擎机器人的方法
2015/04/15 PHP
在thinkphp5.0路径中实现去除index.php的方式
2019/10/16 PHP
js变量作用域及可访问性的探讨
2006/11/23 Javascript
利用javascript实现一些常用软件的下载导航
2009/08/03 Javascript
Jquery插件实现点击获取验证码后60秒内禁止重新获取
2015/03/13 Javascript
NodeJs中的VM模块详解
2015/05/06 NodeJs
7个有用的jQuery代码片段分享
2015/05/19 Javascript
jQuery密码强度检测插件passwordStrength用法实例分析
2015/10/30 Javascript
Bootstrap项目实战之子栏目资讯内容
2016/04/25 Javascript
js创建数组的简单方法
2016/07/27 Javascript
jQuery常用样式操作实例分析(获取、设置、追加、删除、判断等)
2016/09/08 Javascript
Angularjs实现带查找筛选功能的select下拉框示例代码
2016/10/04 Javascript
JavaScript仿聊天室聊天记录
2016/12/27 Javascript
BACKBONE.JS 简单入门范例
2017/10/17 Javascript
js生成word中图片处理方法
2018/01/06 Javascript
Express本地测试HTTPS的示例代码
2018/06/06 Javascript
jQuery实现带3D切割效果的轮播图功能示例【附源码下载】
2019/04/04 jQuery
微信公众号服务器验证Token步骤图解
2019/12/30 Javascript
Python Requests安装与简单运用
2016/04/07 Python
一个简单的python爬虫程序 爬取豆瓣热度Top100以内的电影信息
2018/04/17 Python
python实现自动登录
2018/09/17 Python
python3实现网页版raspberry pi(树莓派)小车控制
2020/02/12 Python
澳大利亚领先的美容护肤品零售商之一:SkincareStore
2018/01/22 全球购物
英国复古服装购物网站:Collectif
2019/10/30 全球购物
StubHub中国:购买和出售全球活动门票
2020/01/01 全球购物
巴西购物网站:Onofre Agora
2020/06/08 全球购物
如何设置Java的运行环境
2013/04/05 面试题
内容编辑个人求职信
2013/12/10 职场文书
公司总经理工作职责管理办法
2014/02/28 职场文书
无犯罪记录证明
2014/09/19 职场文书
表扬通报怎么写
2015/01/16 职场文书
复兴之路纪录片观后感
2015/06/02 职场文书
Python 恐龙跑跑小游戏实现流程
2022/02/15 Python
淡雅古典唯美少女娇媚宁静迷人写真
2022/03/21 杂记