JavaScript求一组数的最小公倍数和最大公约数常用算法详解【面向对象,回归迭代和循环】


Posted in Javascript onMay 07, 2018

本文实例讲述了JavaScript求一组数的最小公倍数和最大公约数常用算法。分享给大家供大家参考,具体如下:

方法来自求多个数最小公倍数的一种变换算法(详见附录说明)

最小公倍数的算法由最大公约数转化而来。最大公约数可通过如下步骤求得:

(1) 找到a1,a2,..,an中的最小非零项aj,若有多个最小非零项则任取一个
(2) aj以外的所有其他非0项ak用ak mod aj代替;若没有除aj以外的其他非0项,则转到(4)
(3) 转到(1)
(4) a1,a2,..,an的最大公约数为aj

写了两个版本的javascript求公倍数和公约数,主要偏重于算法,没有太注意命名,很多就直接写的单字母名称。

0. 简单易懂的循环

function getMin(arr){
  var min = Infinity
  arr.forEach(function(item){
    if( item < min && item !=0 ){
      min = item
    }
  })
  return min
}
function howMuchZero(arr){
  var zerocount = 0
  arr.forEach( function(item){
    item === 0 ?
    zerocount++ : zerocount
  }
    )
  if(zerocount === arr.length -1) {
    return true
  }
  else return false
}
function maxDivi(arr){
  do {
  var min = getMin(arr)
  arr = arr.map((item)=> item===min? item:item%min
    )
  }
  while (!howMuchZero(arr))
  return getMin(arr)
}
function minMulti(arr){
  var totalMulti = arr.reduce((pre,item)=>
    pre = pre * item
    )
  var brr = arr.map((item)=>
    totalMulti/item
    )
  var brr_maxDivi = maxDivi(brr)
  return totalMulti/brr_maxDivi
}

1. function套function

var arr_minMulti, arr_maxdivi
function minMulti(arr){
  var totalmulti =
    arr.reduce((multi,curvalue) => multi * curvalue)
  if (totalmulti === 0) {
    arr_minMulti = 0
    return
  }
  var marr = arr.map((item) => totalmulti/item)
  maxDivisor(marr)
   arr_minMulti = totalmulti / arr_maxdivi
}
function maxDivisor(arr){
  var min = getMin(arr)
  if(min === Infinity) {
    arr_maxdivi = min
    return
  }
  var exparr = arr.filter(function(item){
      return (item !== min && item !== 0)
  })
  if(exparr.length === 0){
    arr_maxdivi = min
    return;
  }
  else{
    var modearr = arr.map(function(item){
      return (item === min||item===0)? item:item%min
    })
    console.log(modearr,'modearr')
    maxDivisor(modearr)
  }
}
function getMin(arr){
  var min = Infinity
  arr.forEach(function(item){
    if (item && item < min) {
      min = item
    }
  })
  return min
}
arr =[13,20,10,26]
minMulti(arr)
console.log('最小公倍数',arr_minMulti)

2. object oriented 面向对象

function maxDivisor(arr,origin){
  this.arr = arr
  this.min = this._getMin(arr)
  this.maxDivisor = this._getMaxDiv()
  if(origin){
    this.minMulti = this._getMinMulti()
  }
}
maxDivisor.prototype._getMin = function(arr) {
  var min = Infinity
  arr.forEach(item => min = (item && item < min)? item : min)
  return min
}
maxDivisor.prototype._getMaxDiv = function() {
  var arr_maxdivi
  var self = this,
    arr = this.arr
  function maxDivisor(arr){
    //console.log(self._getMin)
    var min = self._getMin.call(null,arr)
     console.log(min,'min')
    if(min === Infinity) {
      arr_maxdivi = 0
      return ;
    }
    var exparr = arr.filter( item => (item !== min && item != 0) )
    if(exparr.length === 0){
      arr_maxdivi = min
      return;
    }
    else{
      var modearr = arr.map(item =>
        (item === min || item === 0)? item : item % min
      )
      maxDivisor(modearr)
      }
  }
  maxDivisor(this.arr)
  return arr_maxdivi
}
maxDivisor.prototype._getMinMulti = function(){
  var arr = this.arr,
    arr_minMulti
  var totalmulti =
    arr.reduce((multi,curvalue) => multi * curvalue)
  if (totalmulti === 0) {
    return 0
  }
  else {
    var marr = arr.map((item) => totalmulti/item),
    b = new maxDivisor(marr,false)
    arr_minMulti = totalmulti / b.maxDivisor
    return arr_minMulti
  }
}
var a = new maxDivisor([12,9,6],true)
console.log(a)

附录:求多个数最小公倍数的一种变换算法原理分析

令[a1,a2,..,an] 表示a1,a2,..,an的最小公倍数,(a1,a2,..,an)表示a1,a2,..,an的最大公约数,其中a1,a2,..,an为非负整数。对于两个数a,b,有[a,b]=ab/(a,b),因此两个数最小公倍数可以用其最大公约数计算。但对于多个数,并没有[a1,a2,..,an]=M/(a1,a2,..,an)成立,M为a1,a2,..,an的乘积。例如:[2,3,4]并不等于24/(2,3,4)。即两个数的最大公约数和最小公倍数之间的关系不能简单扩展为n个数的情况。

这里对多个数最小公倍数和多个数最大公约数之间的关系进行了探讨。将两个数最大公约数和最小公倍数之间的关系扩展到n个数的情况。在此基础上,利用求n个数最大公约数的向量变换算法计算多个数的最小公倍数。

1.多个数最小公倍数和多个数最大公约数之间的关系

令p为a1,a2,..,an中一个或多个数的素因子,a1,a2,..,an关于p的次数分别为r1,r2,..,rn,在r1,r2,..,rn中最大值为rc1=rc2=..=rcm=rmax,最小值为rd1=rd2=..=rdt=rmin,即r1,r2,..,rn中有m个数所含p的次数为最大值,有t个数所含p的次数为最小值。例如:4,12,16中关于素因子2的次数分别为2,2,4,有1个数所含2的次数为最大值,有2个数所含2的次数为最小值;关于素因子3的次数分别为0,1,0,有1个数所含3的次数为最大值,有2个数所含3的次数为最小值。

对最大公约数有,只包含a1,a2,..,an中含有的素因子,且每个素因子次数为a1,a2,..,an中该素因子的最低次数,最低次数为0表示不包含[1]。

对最小公倍数有,只包含a1,a2,..,an中含有的素因子,且每个素因子次数为a1,a2,..,an中该素因子的最高次数[1]。

定理1:[a1,a2,..,an]=M/(M/a1,M/a2,..,M/an),其中M为a1,a2,..,an的乘积,a1,a2,..,an为正整数。

例如:对于4,6,8,10,有[4,6,8,10]=120,而M=4*6*8*10=1920,M/(M/a1,M/a2,..,M/an) =1920/(6*8*10,4*8*10,4*6*10,4*6*8)=1920/16=120。

证明:

M/a1,M/a2,..,M/an中p的次数都大于等于r1+r2+..+rn-rmax,且有p的次数等于r1+r2+..+rn-rmax的。这是因为

(1)M/ai中p的次数为r1+r2+..+rn-ri,因而M/a1,M/a2,..,M/an中p的次数最小为r1+r2+..+rn-rmax。

(2)对于a1,a2,..,an中p的次数最大的项aj(1项或多项),M/aj中p的次数为r1+r2+..+rn-rmax。

或者对于a1,a2,..,an中p的次数最大的项aj,M/aj中p的次数小于等于M/ak,其中ak为a1,a2,..,an中除aj外其他的n-1个项之一,而M/aj中p的次数为r1+r2+..+rn-rmax。

因此,(M/a1,M/a2,..,M/an)中p的次数为r1+r2+..+rn-rmax,从而M/(M/a1,M/a2,..,M/an)中p的次数为rmax。

上述的p并没有做任何限制。由于a1,a2,..,an中包含的所有素因子在M/(M/a1,M/a2,..,M/an)中都为a1,a2,..,an中的最高次数,故有[a1,a2,..,an]=M/(M/a1,M/a2,..,M/an)成立。

得证。

定理1对于2个数的情况为[a,b]=ab/(ab/a,ab/b)=ab/(b,a)=ab/(a,b),即[a,b]=ab/(a,b)。因此,定理1为2个数最小公倍数公式[a,b]=ab/(a,b)的扩展。利用定理1能够把求多个数的最小公倍数转化为求多个数的最大公约数。

2.多个数最大公约数的算法实现

根据定理1,求多个数最小公倍数可以转化为求多个数的最大公约数。求多个数的最大公约数(a1,a2,..,an)的传统方法是多次求两个数的最大公约数,即

(1)用辗转相除法[2]计算a1和a2的最大公约数(a1,a2)

(2)用辗转相除法计算(a1,a2)和a3的最大公约数,求得(a1,a2,a3)

(3)用辗转相除法计算(a1,a2,a3)和a4的最大公约数,求得(a1,a2,a3,a4)

(4)依此重复,直到求得(a1,a2,..,an)

上述方法需要n-1次辗转相除运算。

本文将两个数的辗转相除法扩展为n个数的辗转相除法,即用一次n个数的辗转相除法计算n个数的最大公约数,基本方法是采用反复用最小数模其它数的方法进行计算,依据是下面的定理2。

定理2:多个非负整数a1,a2,..,an,若aj>ai,i不等于j,则在a1,a2,..,an中用aj-ai替换aj,其最大公约数不变,即 (a1,a2,..,aj-1,aj,aj+1,..an)=(a1,a2,..,aj-1,aj-ai,aj+1,..an)。

例如:(34,24,56,68)=(34,24,56-34,68)=(34,24,22,68)。

证明:

根据最大公约数的交换律和结合率,有

(a1,a2,..,aj-1,aj,aj+1,..an)= ((ai,aj),(a1,a2,..,ai-1,ai+1,..aj-1,aj+1,..an))(i>j情况),或者

(a1,a2,..,aj-1,aj,aj+1,..an)= ((ai,aj),(a1,a2,..,aj-1,aj+1,..ai-1,ai+1,..an))(i<j情况)。

而对(a1,a2,..,aj-1,aj-ai,aj+1,..an),有

(a1,a2,..,aj-1,aj-ai,aj+1,..an)= ((ai, aj-ai),( a1,a2,..,ai-1,ai+1,.. aj-1,aj+1,..an))(i>j情况),或者

(a1,a2,..,aj-1,aj-ai,aj+1,..an)= ((ai, aj-ai),( a1,a2,..,aj-1,aj+1,.. ai-1,ai+1,..an))(i<j情况)。

因此只需证明(ai,aj)=( ai, aj-ai)即可。

由于(aj-ai)= aj-ai,因此ai,aj的任意公因子必然也是(aj-ai)的因子,即也是ai,( aj-ai)的公因子。由于aj = (aj-ai)+ai,因此ai,( aj-ai)的任意公因子必然也是aj的因子,即也是ai,aj的公因子。所以,ai,aj的最大公约数和ai,(aj-ai) 的最大公约数必须相等,即(ai,aj)=(ai,aj-ai)成立。

得证。

定理2类似于矩阵的初等变换,即

令一个向量的最大公约数为该向量各个分量的最大公约数。对于向量<a1,a2,..,an>进行变换:在一个分量中减去另一个分量,新向量和原向量的最大公约数相等。

求多个数的最大公约数采用反复用最小数模其它数的方法,即对其他数用最小数多次去减,直到剩下比最小数更小的余数。令n个正整数为a1,a2,..,an,求多个数最大共约数的算法描述为:

(1)找到a1,a2,..,an中的最小非零项aj,若有多个最小非零项则任取一个

(2)aj以外的所有其他非0项ak用ak mod aj代替;若没有除aj以外的其他非0项,则转到(4)

(3)转到(3)

(4)a1,a2,..,an的最大公约数为aj

例如:对于5个数34, 56, 78, 24, 85,有

(34, 56, 78, 24, 85)=(10,8,6,24,13)=(4,2,6,0,1)=(0,0,0,0,1)=1,

对于6个数12, 24, 30, 32, 36, 42,有

(12, 24, 30, 32, 36, 42)=(12,0,6,8,0,6)=(0,0,0,2,0,6)=(0,0,0,2,0,0)=2。

3. 多个数最小共倍数的算法实现

求多个数最小共倍数的算法为:

(1)计算m=a1*a2*..*an

(2)把a1,a2,..,an中的所有项ai用m/ai代换

(3)找到a1,a2,..,an中的最小非零项aj,若有多个最小非零项则任取一个

(4)aj以外的所有其他非0项ak用ak mod aj代替;若没有除aj以外的其他非0项,则转到(6)

(5)转到(3)

(6)最小公倍数为m/aj

上述算法在VC环境下用高级语言进行了编程实现,通过多组求5个随机数最小公倍数的实例,与标准方法进行了比较,验证了其正确性。标准计算方法为:求5个随机数最小公倍数通过求4次两个数的最小公倍数获得,而两个数的最小公倍数通过求两个数的最大公约数获得。

5. 结论

计算多个数的最小公倍数是常见的基本运算。n个数的最小公倍数可以表示成另外n个数的最大公约数,因而可以通过求多个数的最大公约数计算。求多个数最大公约数可采用向量转换算法一次性求得。

Javascript 相关文章推荐
5 cool javascript apps
Mar 24 Javascript
js利用与或运算符优先级实现if else条件判断表达式
Apr 15 Javascript
ExtJs的Date格式字符代码
Dec 30 Javascript
js读写(删除)Cookie实例详解
Apr 17 Javascript
jquery 漂亮的删除确认和提交无刷新删除示例
Nov 13 Javascript
jQuery trigger()方法用法介绍
Jan 13 Javascript
jQuery实现DIV层淡入淡出拖动特效的方法
Feb 13 Javascript
基于JavaScript实现飘落星星特效
Aug 10 Javascript
Vue axios 将传递的json数据转为form data的例子
Oct 29 Javascript
JS实现横向轮播图(初级版)
Jun 24 Javascript
部署vue+Springboot前后端分离项目的步骤实现
May 31 Javascript
javascript实现前端分页功能
Nov 26 Javascript
详解VUE-地区选择器(V-Distpicker)组件使用心得
May 07 #Javascript
JavaScript实现的DOM树遍历方法详解【二叉DOM树、多叉DOM树】
May 07 #Javascript
Vue 实现树形视图数据功能
May 07 #Javascript
JavaScript 跨域之POST实现方法
May 07 #Javascript
ES6关于Promise的用法详解
May 07 #Javascript
React Form组件的实现封装杂谈
May 07 #Javascript
vue如何将v-for中的表格导出来
May 07 #Javascript
You might like
用 PHP5 轻松解析 XML
2006/12/04 PHP
PHP和XSS跨站攻击的防范
2007/04/17 PHP
PHP数据类型之整数类型、浮点数的介绍
2013/04/28 PHP
汉化英文版的Dreamweaver CS5并自动提示jquery
2010/11/25 Javascript
JQuery的Ajax跨域请求原理概述及实例
2013/04/26 Javascript
JavaScript 面向对象与原型
2015/04/10 Javascript
javascript实现密码验证
2015/11/10 Javascript
AngularJs html compiler详解及示例代码
2016/09/01 Javascript
jquery实现百叶窗效果
2017/01/12 Javascript
Vue.js组件tab实现选项卡切换
2020/03/23 Javascript
es6中的解构赋值、扩展运算符和rest参数使用详解
2017/09/28 Javascript
jQuery图片加载失败替换默认图片方法汇总
2017/11/29 jQuery
JavaScript获取移动设备型号的实现代码(JS获取手机型号和系统)
2018/03/10 Javascript
jQuery实现的简单拖拽功能示例【测试可用】
2018/08/14 jQuery
Vue CLI3 开启gzip压缩文件的方式
2018/09/30 Javascript
利用Electron简单撸一个Markdown编辑器的方法
2019/06/10 Javascript
[02:41]《西雅图我们来了》2015国际邀请赛出征全记录
2015/07/23 DOTA
Python写入数据到MP3文件中的方法
2015/07/10 Python
Python实现矩阵转置的方法分析
2017/11/24 Python
Python实现学校管理系统
2018/01/11 Python
Python实用技巧之列表、字典、集合中根据条件筛选数据详解
2018/07/11 Python
Python实现简单的用户交互方法详解
2018/09/25 Python
使用Python在Windows下获取USB PID&amp;VID的方法
2019/07/02 Python
Python unittest单元测试openpyxl实现过程解析
2020/05/27 Python
财务工作个人求职的自我评价
2013/12/19 职场文书
销售经理岗位职责
2014/03/16 职场文书
自行车广告词大全
2014/03/21 职场文书
毕业生如何写自荐信
2014/03/26 职场文书
幼儿园大班毕业教师寄语
2014/04/03 职场文书
信息管理专业自荐书
2014/06/05 职场文书
国庆庆典邀请函
2015/02/02 职场文书
幼儿园百日安全活动总结
2015/05/07 职场文书
领导欢送会主持词
2015/07/06 职场文书
2019年世界儿童日宣传标语
2019/11/22 职场文书
python flask框架快速入门
2021/05/14 Python
Windows11插耳机没反应怎么办? win11耳机没声音的多种解决办法
2021/11/21 数码科技