PHP+JS+rsa数据加密传输实现代码


Posted in PHP onMarch 23, 2011

JS端代码:

//文件base64.js: 
var b64map="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; 
var b64pad="="; 
function hex2b64(h) { 
var i; 
var c; 
var ret = ""; 
for(i = 0; i+3 <= h.length; i+=3) { 
c = parseInt(h.substring(i,i+3),16); 
ret += b64map.charAt(c >> 6) + b64map.charAt(c & 63); 
} 
if(i+1 == h.length) { 
c = parseInt(h.substring(i,i+1),16); 
ret += b64map.charAt(c << 2); 
} 
else if(i+2 == h.length) { 
c = parseInt(h.substring(i,i+2),16); 
ret += b64map.charAt(c >> 2) + b64map.charAt((c & 3) << 4); 
} 
while((ret.length & 3) > 0) ret += b64pad; 
return ret; 
} 
// convert a base64 string to hex 
function b64tohex(s) { 
var ret = "" 
var i; 
var k = 0; // b64 state, 0-3 
var slop; 
for(i = 0; i < s.length; ++i) { 
if(s.charAt(i) == b64pad) break; 
v = b64map.indexOf(s.charAt(i)); 
if(v < 0) continue; 
if(k == 0) { 
ret += int2char(v >> 2); 
slop = v & 3; 
k = 1; 
} 
else if(k == 1) { 
ret += int2char((slop << 2) | (v >> 4)); 
slop = v & 0xf; 
k = 2; 
} 
else if(k == 2) { 
ret += int2char(slop); 
ret += int2char(v >> 2); 
slop = v & 3; 
k = 3; 
} 
else { 
ret += int2char((slop << 2) | (v >> 4)); 
ret += int2char(v & 0xf); 
k = 0; 
} 
} 
if(k == 1) 
ret += int2char(slop << 2); 
return ret; 
} 
// convert a base64 string to a byte/number array 
function b64toBA(s) { 
//piggyback on b64tohex for now, optimize later 
var h = b64tohex(s); 
var i; 
var a = new Array(); 
for(i = 0; 2*i < h.length; ++i) { 
a[i] = parseInt(h.substring(2*i,2*i+2),16); 
} 
return a; 
} 
#文件jsbn.js 
// Copyright (c) 2005 Tom Wu 
// All Rights Reserved. 
// See "LICENSE" for details. 
// Basic JavaScript BN library - subset useful for RSA encryption. 
// Bits per digit 
var dbits; 
// JavaScript engine analysis 
var canary = 0xdeadbeefcafe; 
var j_lm = ((canary&0xffffff)==0xefcafe); 
// (public) Constructor 
function BigInteger(a,b,c) { 
if(a != null) 
if("number" == typeof a) this.fromNumber(a,b,c); 
else if(b == null && "string" != typeof a) this.fromString(a,256); 
else this.fromString(a,b); 
} 
// return new, unset BigInteger 
function nbi() { return new BigInteger(null); } 
// am: Compute w_j += (x*this_i), propagate carries, 
// c is initial carry, returns final carry. 
// c < 3*dvalue, x < 2*dvalue, this_i < dvalue 
// We need to select the fastest one that works in this environment. 
// am1: use a single mult and divide to get the high bits, 
// max digit bits should be 26 because 
// max internal value = 2*dvalue^2-2*dvalue (< 2^53) 
function am1(i,x,w,j,c,n) { 
while(--n >= 0) { 
var v = x*this[i++]+w[j]+c; 
c = Math.floor(v/0x4000000); 
w[j++] = v&0x3ffffff; 
} 
return c; 
} 
// am2 avoids a big mult-and-extract completely. 
// Max digit bits should be <= 30 because we do bitwise ops 
// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) 
function am2(i,x,w,j,c,n) { 
var xl = x&0x7fff, xh = x>>15; 
while(--n >= 0) { 
var l = this[i]&0x7fff; 
var h = this[i++]>>15; 
var m = xh*l+h*xl; 
l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff); 
c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); 
w[j++] = l&0x3fffffff; 
} 
return c; 
} 
// Alternately, set max digit bits to 28 since some 
// browsers slow down when dealing with 32-bit numbers. 
function am3(i,x,w,j,c,n) { 
var xl = x&0x3fff, xh = x>>14; 
while(--n >= 0) { 
var l = this[i]&0x3fff; 
var h = this[i++]>>14; 
var m = xh*l+h*xl; 
l = xl*l+((m&0x3fff)<<14)+w[j]+c; 
c = (l>>28)+(m>>14)+xh*h; 
w[j++] = l&0xfffffff; 
} 
return c; 
} 
if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) { 
BigInteger.prototype.am = am2; 
dbits = 30; 
} 
else if(j_lm && (navigator.appName != "Netscape")) { 
BigInteger.prototype.am = am1; 
dbits = 26; 
} 
else { // Mozilla/Netscape seems to prefer am3 
BigInteger.prototype.am = am3; 
dbits = 28; 
} 
BigInteger.prototype.DB = dbits; 
BigInteger.prototype.DM = ((1<<dbits)-1); 
BigInteger.prototype.DV = (1<<dbits); 
var BI_FP = 52; 
BigInteger.prototype.FV = Math.pow(2,BI_FP); 
BigInteger.prototype.F1 = BI_FP-dbits; 
BigInteger.prototype.F2 = 2*dbits-BI_FP; 
// Digit conversions 
var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; 
var BI_RC = new Array(); 
var rr,vv; 
rr = "0".charCodeAt(0); 
for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv; 
rr = "a".charCodeAt(0); 
for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; 
rr = "A".charCodeAt(0); 
for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; 
function int2char(n) { return BI_RM.charAt(n); } 
function intAt(s,i) { 
var c = BI_RC[s.charCodeAt(i)]; 
return (c==null)?-1:c; 
} 
// (protected) copy this to r 
function bnpCopyTo(r) { 
for(var i = this.t-1; i >= 0; --i) r[i] = this[i]; 
r.t = this.t; 
r.s = this.s; 
} 
// (protected) set from integer value x, -DV <= x < DV 
function bnpFromInt(x) { 
this.t = 1; 
this.s = (x<0)?-1:0; 
if(x > 0) this[0] = x; 
else if(x < -1) this[0] = x+DV; 
else this.t = 0; 
} 
// return bigint initialized to value 
function nbv(i) { var r = nbi(); r.fromInt(i); return r; } 
// (protected) set from string and radix 
function bnpFromString(s,b) { 
var k; 
if(b == 16) k = 4; 
else if(b == 8) k = 3; 
else if(b == 256) k = 8; // byte array 
else if(b == 2) k = 1; 
else if(b == 32) k = 5; 
else if(b == 4) k = 2; 
else { this.fromRadix(s,b); return; } 
this.t = 0; 
this.s = 0; 
var i = s.length, mi = false, sh = 0; 
while(--i >= 0) { 
var x = (k==8)?s[i]&0xff:intAt(s,i); 
if(x < 0) { 
if(s.charAt(i) == "-") mi = true; 
continue; 
} 
mi = false; 
if(sh == 0) 
this[this.t++] = x; 
else if(sh+k > this.DB) { 
this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh; 
this[this.t++] = (x>>(this.DB-sh)); 
} 
else 
this[this.t-1] |= x<<sh; 
sh += k; 
if(sh >= this.DB) sh -= this.DB; 
} 
if(k == 8 && (s[0]&0x80) != 0) { 
this.s = -1; 
if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh; 
} 
this.clamp(); 
if(mi) BigInteger.ZERO.subTo(this,this); 
} 
// (protected) clamp off excess high words 
function bnpClamp() { 
var c = this.s&this.DM; 
while(this.t > 0 && this[this.t-1] == c) --this.t; 
} 
// (public) return string representation in given radix 
function bnToString(b) { 
if(this.s < 0) return "-"+this.negate().toString(b); 
var k; 
if(b == 16) k = 4; 
else if(b == 8) k = 3; 
else if(b == 2) k = 1; 
else if(b == 32) k = 5; 
else if(b == 4) k = 2; 
else return this.toRadix(b); 
var km = (1<<k)-1, d, m = false, r = "", i = this.t; 
var p = this.DB-(i*this.DB)%k; 
if(i-- > 0) { 
if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); } 
while(i >= 0) { 
if(p < k) { 
d = (this[i]&((1<<p)-1))<<(k-p); 
d |= this[--i]>>(p+=this.DB-k); 
} 
else { 
d = (this[i]>>(p-=k))&km; 
if(p <= 0) { p += this.DB; --i; } 
} 
if(d > 0) m = true; 
if(m) r += int2char(d); 
} 
} 
return m?r:"0"; 
} 
// (public) -this 
function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; } 
// (public) |this| 
function bnAbs() { return (this.s<0)?this.negate():this; } 
// (public) return + if this > a, - if this < a, 0 if equal 
function bnCompareTo(a) { 
var r = this.s-a.s; 
if(r != 0) return r; 
var i = this.t; 
r = i-a.t; 
if(r != 0) return r; 
while(--i >= 0) if((r=this[i]-a[i]) != 0) return r; 
return 0; 
} 
// returns bit length of the integer x 
function nbits(x) { 
var r = 1, t; 
if((t=x>>>16) != 0) { x = t; r += 16; } 
if((t=x>>8) != 0) { x = t; r += 8; } 
if((t=x>>4) != 0) { x = t; r += 4; } 
if((t=x>>2) != 0) { x = t; r += 2; } 
if((t=x>>1) != 0) { x = t; r += 1; } 
return r; 
} 
// (public) return the number of bits in "this" 
function bnBitLength() { 
if(this.t <= 0) return 0; 
return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM)); 
} 
// (protected) r = this << n*DB 
function bnpDLShiftTo(n,r) { 
var i; 
for(i = this.t-1; i >= 0; --i) r[i+n] = this[i]; 
for(i = n-1; i >= 0; --i) r[i] = 0; 
r.t = this.t+n; 
r.s = this.s; 
} 
// (protected) r = this >> n*DB 
function bnpDRShiftTo(n,r) { 
for(var i = n; i < this.t; ++i) r[i-n] = this[i]; 
r.t = Math.max(this.t-n,0); 
r.s = this.s; 
} 
// (protected) r = this << n 
function bnpLShiftTo(n,r) { 
var bs = n%this.DB; 
var cbs = this.DB-bs; 
var bm = (1<<cbs)-1; 
var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i; 
for(i = this.t-1; i >= 0; --i) { 
r[i+ds+1] = (this[i]>>cbs)|c; 
c = (this[i]&bm)<<bs; 
} 
for(i = ds-1; i >= 0; --i) r[i] = 0; 
r[ds] = c; 
r.t = this.t+ds+1; 
r.s = this.s; 
r.clamp(); 
} 
// (protected) r = this >> n 
function bnpRShiftTo(n,r) { 
r.s = this.s; 
var ds = Math.floor(n/this.DB); 
if(ds >= this.t) { r.t = 0; return; } 
var bs = n%this.DB; 
var cbs = this.DB-bs; 
var bm = (1<<bs)-1; 
r[0] = this[ds]>>bs; 
for(var i = ds+1; i < this.t; ++i) { 
r[i-ds-1] |= (this[i]&bm)<<cbs; 
r[i-ds] = this[i]>>bs; 
} 
if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs; 
r.t = this.t-ds; 
r.clamp(); 
} 
// (protected) r = this - a 
function bnpSubTo(a,r) { 
var i = 0, c = 0, m = Math.min(a.t,this.t); 
while(i < m) { 
c += this[i]-a[i]; 
r[i++] = c&this.DM; 
c >>= this.DB; 
} 
if(a.t < this.t) { 
c -= a.s; 
while(i < this.t) { 
c += this[i]; 
r[i++] = c&this.DM; 
c >>= this.DB; 
} 
c += this.s; 
} 
else { 
c += this.s; 
while(i < a.t) { 
c -= a[i]; 
r[i++] = c&this.DM; 
c >>= this.DB; 
} 
c -= a.s; 
} 
r.s = (c<0)?-1:0; 
if(c < -1) r[i++] = this.DV+c; 
else if(c > 0) r[i++] = c; 
r.t = i; 
r.clamp(); 
} 
// (protected) r = this * a, r != this,a (HAC 14.12) 
// "this" should be the larger one if appropriate. 
function bnpMultiplyTo(a,r) { 
var x = this.abs(), y = a.abs(); 
var i = x.t; 
r.t = i+y.t; 
while(--i >= 0) r[i] = 0; 
for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t); 
r.s = 0; 
r.clamp(); 
if(this.s != a.s) BigInteger.ZERO.subTo(r,r); 
} 
// (protected) r = this^2, r != this (HAC 14.16) 
function bnpSquareTo(r) { 
var x = this.abs(); 
var i = r.t = 2*x.t; 
while(--i >= 0) r[i] = 0; 
for(i = 0; i < x.t-1; ++i) { 
var c = x.am(i,x[i],r,2*i,0,1); 
if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) { 
r[i+x.t] -= x.DV; 
r[i+x.t+1] = 1; 
} 
} 
if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1); 
r.s = 0; 
r.clamp(); 
} 
// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) 
// r != q, this != m. q or r may be null. 
function bnpDivRemTo(m,q,r) { 
var pm = m.abs(); 
if(pm.t <= 0) return; 
var pt = this.abs(); 
if(pt.t < pm.t) { 
if(q != null) q.fromInt(0); 
if(r != null) this.copyTo(r); 
return; 
} 
if(r == null) r = nbi(); 
var y = nbi(), ts = this.s, ms = m.s; 
var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus 
if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } 
else { pm.copyTo(y); pt.copyTo(r); } 
var ys = y.t; 
var y0 = y[ys-1]; 
if(y0 == 0) return; 
var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0); 
var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2; 
var i = r.t, j = i-ys, t = (q==null)?nbi():q; 
y.dlShiftTo(j,t); 
if(r.compareTo(t) >= 0) { 
r[r.t++] = 1; 
r.subTo(t,r); 
} 
BigInteger.ONE.dlShiftTo(ys,t); 
t.subTo(y,y); // "negative" y so we can replace sub with am later 
while(y.t < ys) y[y.t++] = 0; 
while(--j >= 0) { 
// Estimate quotient digit 
var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2); 
if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out 
y.dlShiftTo(j,t); 
r.subTo(t,r); 
while(r[i] < --qd) r.subTo(t,r); 
} 
} 
if(q != null) { 
r.drShiftTo(ys,q); 
if(ts != ms) BigInteger.ZERO.subTo(q,q); 
} 
r.t = ys; 
r.clamp(); 
if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder 
if(ts < 0) BigInteger.ZERO.subTo(r,r); 
} 
// (public) this mod a 
function bnMod(a) { 
var r = nbi(); 
this.abs().divRemTo(a,null,r); 
if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r); 
return r; 
} 
// Modular reduction using "classic" algorithm 
function Classic(m) { this.m = m; } 
function cConvert(x) { 
if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); 
else return x; 
} 
function cRevert(x) { return x; } 
function cReduce(x) { x.divRemTo(this.m,null,x); } 
function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } 
function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); } 
Classic.prototype.convert = cConvert; 
Classic.prototype.revert = cRevert; 
Classic.prototype.reduce = cReduce; 
Classic.prototype.mulTo = cMulTo; 
Classic.prototype.sqrTo = cSqrTo; 
// (protected) return "-1/this % 2^DB"; useful for Mont. reduction 
// justification: 
// xy == 1 (mod m) 
// xy = 1+km 
// xy(2-xy) = (1+km)(1-km) 
// x[y(2-xy)] = 1-k^2m^2 
// x[y(2-xy)] == 1 (mod m^2) 
// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 
// should reduce x and y(2-xy) by m^2 at each step to keep size bounded. 
// JS multiply "overflows" differently from C/C++, so care is needed here. 
function bnpInvDigit() { 
if(this.t < 1) return 0; 
var x = this[0]; 
if((x&1) == 0) return 0; 
var y = x&3; // y == 1/x mod 2^2 
y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 
y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 
y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 
// last step - calculate inverse mod DV directly; 
// assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints 
y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits 
// we really want the negative inverse, and -DV < y < DV 
return (y>0)?this.DV-y:-y; 
} 
// Montgomery reduction 
function Montgomery(m) { 
this.m = m; 
this.mp = m.invDigit(); 
this.mpl = this.mp&0x7fff; 
this.mph = this.mp>>15; 
this.um = (1<<(m.DB-15))-1; 
this.mt2 = 2*m.t; 
} 
// xR mod m 
function montConvert(x) { 
var r = nbi(); 
x.abs().dlShiftTo(this.m.t,r); 
r.divRemTo(this.m,null,r); 
if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r); 
return r; 
} 
// x/R mod m 
function montRevert(x) { 
var r = nbi(); 
x.copyTo(r); 
this.reduce(r); 
return r; 
} 
// x = x/R mod m (HAC 14.32) 
function montReduce(x) { 
while(x.t <= this.mt2) // pad x so am has enough room later 
x[x.t++] = 0; 
for(var i = 0; i < this.m.t; ++i) { 
// faster way of calculating u0 = x[i]*mp mod DV 
var j = x[i]&0x7fff; 
var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM; 
// use am to combine the multiply-shift-add into one call 
j = i+this.m.t; 
x[j] += this.m.am(0,u0,x,i,0,this.m.t); 
// propagate carry 
while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; } 
} 
x.clamp(); 
x.drShiftTo(this.m.t,x); 
if(x.compareTo(this.m) >= 0) x.subTo(this.m,x); 
} 
// r = "x^2/R mod m"; x != r 
function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); } 
// r = "xy/R mod m"; x,y != r 
function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } 
Montgomery.prototype.convert = montConvert; 
Montgomery.prototype.revert = montRevert; 
Montgomery.prototype.reduce = montReduce; 
Montgomery.prototype.mulTo = montMulTo; 
Montgomery.prototype.sqrTo = montSqrTo; 
// (protected) true iff this is even 
function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; } 
// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) 
function bnpExp(e,z) { 
if(e > 0xffffffff || e < 1) return BigInteger.ONE; 
var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; 
g.copyTo(r); 
while(--i >= 0) { 
z.sqrTo(r,r2); 
if((e&(1<<i)) > 0) z.mulTo(r2,g,r); 
else { var t = r; r = r2; r2 = t; } 
} 
return z.revert(r); 
} 
// (public) this^e % m, 0 <= e < 2^32 
function bnModPowInt(e,m) { 
var z; 
if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); 
return this.exp(e,z); 
} 
// protected 
BigInteger.prototype.copyTo = bnpCopyTo; 
BigInteger.prototype.fromInt = bnpFromInt; 
BigInteger.prototype.fromString = bnpFromString; 
BigInteger.prototype.clamp = bnpClamp; 
BigInteger.prototype.dlShiftTo = bnpDLShiftTo; 
BigInteger.prototype.drShiftTo = bnpDRShiftTo; 
BigInteger.prototype.lShiftTo = bnpLShiftTo; 
BigInteger.prototype.rShiftTo = bnpRShiftTo; 
BigInteger.prototype.subTo = bnpSubTo; 
BigInteger.prototype.multiplyTo = bnpMultiplyTo; 
BigInteger.prototype.squareTo = bnpSquareTo; 
BigInteger.prototype.divRemTo = bnpDivRemTo; 
BigInteger.prototype.invDigit = bnpInvDigit; 
BigInteger.prototype.isEven = bnpIsEven; 
BigInteger.prototype.exp = bnpExp; 
// public 
BigInteger.prototype.toString = bnToString; 
BigInteger.prototype.negate = bnNegate; 
BigInteger.prototype.abs = bnAbs; 
BigInteger.prototype.compareTo = bnCompareTo; 
BigInteger.prototype.bitLength = bnBitLength; 
BigInteger.prototype.mod = bnMod; 
BigInteger.prototype.modPowInt = bnModPowInt; 
// "constants" 
BigInteger.ZERO = nbv(0); 
BigInteger.ONE = nbv(1); 
#文件prng4.js 
// prng4.js - uses Arcfour as a PRNG 
function Arcfour() { 
this.i = 0; 
this.j = 0; 
this.S = new Array(); 
} 
// Initialize arcfour context from key, an array of ints, each from [0..255] 
function ARC4init(key) { 
var i, j, t; 
for(i = 0; i < 256; ++i) 
this.S[i] = i; 
j = 0; 
for(i = 0; i < 256; ++i) { 
j = (j + this.S[i] + key[i % key.length]) & 255; 
t = this.S[i]; 
this.S[i] = this.S[j]; 
this.S[j] = t; 
} 
this.i = 0; 
this.j = 0; 
} 
function ARC4next() { 
var t; 
this.i = (this.i + 1) & 255; 
this.j = (this.j + this.S[this.i]) & 255; 
t = this.S[this.i]; 
this.S[this.i] = this.S[this.j]; 
this.S[this.j] = t; 
return this.S[(t + this.S[this.i]) & 255]; 
} 
Arcfour.prototype.init = ARC4init; 
Arcfour.prototype.next = ARC4next; 
// Plug in your RNG constructor here 
function prng_newstate() { 
return new Arcfour(); 
} 
// Pool size must be a multiple of 4 and greater than 32. 
// An array of bytes the size of the pool will be passed to init() 
var rng_psize = 256; 
文件:rng.js 
// Random number generator - requires a PRNG backend, e.g. prng4.js 
// For best results, put code like 
// <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'> 
// in your main HTML document. 
var rng_state; 
var rng_pool; 
var rng_pptr; 
// Mix in a 32-bit integer into the pool 
function rng_seed_int(x) { 
rng_pool[rng_pptr++] ^= x & 255; 
rng_pool[rng_pptr++] ^= (x >> 8) & 255; 
rng_pool[rng_pptr++] ^= (x >> 16) & 255; 
rng_pool[rng_pptr++] ^= (x >> 24) & 255; 
if(rng_pptr >= rng_psize) rng_pptr -= rng_psize; 
} 
// Mix in the current time (w/milliseconds) into the pool 
function rng_seed_time() { 
rng_seed_int(new Date().getTime()); 
} 
// Initialize the pool with junk if needed. 
if(rng_pool == null) { 
rng_pool = new Array(); 
rng_pptr = 0; 
var t; 
if(navigator.appName == "Netscape" && navigator.appVersion < "5" && window.crypto) { 
// Extract entropy (256 bits) from NS4 RNG if available 
var z = window.crypto.random(32); 
for(t = 0; t < z.length; ++t) 
rng_pool[rng_pptr++] = z.charCodeAt(t) & 255; 
} 
while(rng_pptr < rng_psize) { // extract some randomness from Math.random() 
t = Math.floor(65536 * Math.random()); 
rng_pool[rng_pptr++] = t >>> 8; 
rng_pool[rng_pptr++] = t & 255; 
} 
rng_pptr = 0; 
rng_seed_time(); 
//rng_seed_int(window.screenX); 
//rng_seed_int(window.screenY); 
} 
function rng_get_byte() { 
if(rng_state == null) { 
rng_seed_time(); 
rng_state = prng_newstate(); 
rng_state.init(rng_pool); 
for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr) 
rng_pool[rng_pptr] = 0; 
rng_pptr = 0; 
//rng_pool = null; 
} 
// TODO: allow reseeding after first request 
return rng_state.next(); 
} 
function rng_get_bytes(ba) { 
var i; 
for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte(); 
} 
function SecureRandom() {} 
SecureRandom.prototype.nextBytes = rng_get_bytes; 
#文件:rsa.js 
// Depends on jsbn.js and rng.js 
// Version 1.1: support utf-8 encoding in pkcs1pad2 
// convert a (hex) string to a bignum object 
function parseBigInt(str,r) { 
return new BigInteger(str,r); 
} 
function linebrk(s,n) { 
var ret = ""; 
var i = 0; 
while(i + n < s.length) { 
ret += s.substring(i,i+n) + "\n"; 
i += n; 
} 
return ret + s.substring(i,s.length); 
} 
function byte2Hex(b) { 
if(b < 0x10) 
return "0" + b.toString(16); 
else 
return b.toString(16); 
} 
// PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint 
function pkcs1pad2(s,n) { 
if(n < s.length + 11) { // TODO: fix for utf-8 
alert("Message too long for RSA"); 
return null; 
} 
var ba = new Array(); 
var i = s.length - 1; 
while(i >= 0 && n > 0) { 
var c = s.charCodeAt(i--); 
if(c < 128) { // encode using utf-8 
ba[--n] = c; 
} 
else if((c > 127) && (c < 2048)) { 
ba[--n] = (c & 63) | 128; 
ba[--n] = (c >> 6) | 192; 
} 
else { 
ba[--n] = (c & 63) | 128; 
ba[--n] = ((c >> 6) & 63) | 128; 
ba[--n] = (c >> 12) | 224; 
} 
} 
ba[--n] = 0; 
var rng = new SecureRandom(); 
var x = new Array(); 
while(n > 2) { // random non-zero pad 
x[0] = 0; 
while(x[0] == 0) rng.nextBytes(x); 
ba[--n] = x[0]; 
} 
ba[--n] = 2; 
ba[--n] = 0; 
return new BigInteger(ba); 
} 
// "empty" RSA key constructor 
function RSAKey() { 
this.n = null; 
this.e = 0; 
this.d = null; 
this.p = null; 
this.q = null; 
this.dmp1 = null; 
this.dmq1 = null; 
this.coeff = null; 
} 
// Set the public key fields N and e from hex strings 
function RSASetPublic(N,E) { 
if(N != null && E != null && N.length > 0 && E.length > 0) { 
this.n = parseBigInt(N,16); 
this.e = parseInt(E,16); 
} 
else 
alert("Invalid RSA public key"); 
} 
// Perform raw public operation on "x": return x^e (mod n) 
function RSADoPublic(x) { 
return x.modPowInt(this.e, this.n); 
} 
// Return the PKCS#1 RSA encryption of "text" as an even-length hex string 
function RSAEncrypt(text) { 
var m = pkcs1pad2(text,(this.n.bitLength()+7)>>3); 
if(m == null) return null; 
var c = this.doPublic(m); 
if(c == null) return null; 
var h = c.toString(16); 
if((h.length & 1) == 0) return h; else return "0" + h; 
} 
// Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string 
//function RSAEncryptB64(text) { 
// var h = this.encrypt(text); 
// if(h) return hex2b64(h); else return null; 
//} 
// protected 
RSAKey.prototype.doPublic = RSADoPublic; 
// public 
RSAKey.prototype.setPublic = RSASetPublic; 
RSAKey.prototype.encrypt = RSAEncrypt; 
//RSAKey.prototype.encrypt_b64 = RSAEncryptB64;

HTML代码部分:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> 
<html> 
<head> 
<title>JavaScript RSA Encryption Demo</title> 
</head> 
<script language="JavaScript" type="text/javascript" src="./js/jsbn.js"></script> 
<script language="JavaScript" type="text/javascript" src="./js/prng4.js"></script> 
<script language="JavaScript" type="text/javascript" src="./js/rng.js"></script> 
<script language="JavaScript" type="text/javascript" src="./js/rsa.js"></script> 
<script language="JavaScript" type="text/javascript" src="./js/base64.js"></script> 
<script language="JavaScript"> 
//publc key and public length 16 binary data 
var public_key="00b0c2732193eebde5b2e278736a22977a5ee1bb99bea18c0681ad97484b4c7f681e963348eb80667b954534293b0a6cbe2f9651fc98c9ee833f343e719c97c670ead8bec704282f94d9873e083cfd41554f356f00aea38d2b07551733541b64790c2c8f400486fd662a3e95fd5edd2acf4d59ca97fad65cc59b8d10cbc5430c53"; 
var public_length="10001"; 
function do_encrypt() { 
var before = new Date(); 
var rsa = new RSAKey(); 
rsa.setPublic(public_key, public_length); 
var res = rsa.encrypt(document.rsatest.plaintext.value); 
var after = new Date(); 
if(res) { 
document.rsatest.ciphertext.value =res; 
document.rsatest.cipherb64.value = hex2b64(res); 
document.rsatest.status.value = "Time: " + (after - before) + "ms"; 
} 
} 
//--> 
</script> 
<form name="rsatest" action="rsa-example.php" method="post"> 
Plaintext (string):<br> 
<input name="plaintext" type="text" value="test" size=40> 
<input type="button" value="encrypt" onClick="do_encrypt();"><p> 
Ciphertext (hex):<br> 
<textarea name="ciphertext" rows=4 cols=70></textarea><p> 
Ciphertext (base64):(Not used)<br> 
<textarea name="cipherb64" rows=3 cols=70></textarea><p> 
Status:<br> 
<input name="status" type="text" size=40><p> 
<input type="submit" value="go php" /> 
</form> 
</body> 
</html>

后端PHP部分:
RSA库:
<?php 
/* 
* PHP implementation of the RSA algorithm 
* (C) Copyright 2004 Edsko de Vries, Ireland 
* 
* Licensed under the GNU Public License (GPL) 
* 
* This implementation has been verified against [3] 
* (tested Java/PHP interoperability). 
* 
* References: 
* [1] "Applied Cryptography", Bruce Schneier, John Wiley & Sons, 1996 
* [2] "Prime Number Hide-and-Seek", Brian Raiter, Muppetlabs (online) 
* [3] "The Bouncy Castle Crypto Package", Legion of the Bouncy Castle, 
* (open source cryptography library for Java, online) 
* [4] "PKCS #1: RSA Encryption Standard", RSA Laboratories Technical Note, 
* version 1.5, revised November 1, 1993 
*/ 
/* 
* Functions that are meant to be used by the user of this PHP module. 
* 
* Notes: 
* - $key and $modulus should be numbers in (decimal) string format 
* - $message is expected to be binary data 
* - $keylength should be a multiple of 8, and should be in bits 
* - For rsa_encrypt/rsa_sign, the length of $message should not exceed 
* ($keylength / 8) - 11 (as mandated by [4]). 
* - rsa_encrypt and rsa_sign will automatically add padding to the message. 
* For rsa_encrypt, this padding will consist of random values; for rsa_sign, 
* padding will consist of the appropriate number of 0xFF values (see [4]) 
* - rsa_decrypt and rsa_verify will automatically remove message padding. 
* - Blocks for decoding (rsa_decrypt, rsa_verify) should be exactly 
* ($keylength / 8) bytes long. 
* - rsa_encrypt and rsa_verify expect a public key; rsa_decrypt and rsa_sign 
* expect a private key. 
*/ 
/** 
* 于2010-11-12 1:06分于LONELY修改 
*/ 
function rsa_encrypt($message, $public_key, $modulus, $keylength) 
{ 
$padded = add_PKCS1_padding($message, true, $keylength / 8); 
$number = binary_to_number($padded); 
$encrypted = pow_mod($number, $public_key, $modulus); 
$result = number_to_binary($encrypted, $keylength / 8); 
return $result; 
} 
function rsa_decrypt($message, $private_key, $modulus, $keylength) 
{ 
$number = binary_to_number($message); 
$decrypted = pow_mod($number, $private_key, $modulus); 
$result = number_to_binary($decrypted, $keylength / 8); 
return remove_PKCS1_padding($result, $keylength / 8); 
} 
function rsa_sign($message, $private_key, $modulus, $keylength) 
{ 
$padded = add_PKCS1_padding($message, false, $keylength / 8); 
$number = binary_to_number($padded); 
$signed = pow_mod($number, $private_key, $modulus); 
$result = number_to_binary($signed, $keylength / 8); 
return $result; 
} 
function rsa_verify($message, $public_key, $modulus, $keylength) 
{ 
return rsa_decrypt($message, $public_key, $modulus, $keylength); 
} 
function rsa_kyp_verify($message, $public_key, $modulus, $keylength) 
{ 
$number = binary_to_number($message); 
$decrypted = pow_mod($number, $public_key, $modulus); 
$result = number_to_binary($decrypted, $keylength / 8); 
return remove_KYP_padding($result, $keylength / 8); 
} 
/* 
* Some constants 
*/ 
define("BCCOMP_LARGER", 1); 
/* 
* The actual implementation. 
* Requires BCMath support in PHP (compile with --enable-bcmath) 
*/ 
//-- 
// Calculate (p ^ q) mod r 
// 
// We need some trickery to [2]: 
// (a) Avoid calculating (p ^ q) before (p ^ q) mod r, because for typical RSA 
// applications, (p ^ q) is going to be _WAY_ too large. 
// (I mean, __WAY__ too large - won't fit in your computer's memory.) 
// (b) Still be reasonably efficient. 
// 
// We assume p, q and r are all positive, and that r is non-zero. 
// 
// Note that the more simple algorithm of multiplying $p by itself $q times, and 
// applying "mod $r" at every step is also valid, but is O($q), whereas this 
// algorithm is O(log $q). Big difference. 
// 
// As far as I can see, the algorithm I use is optimal; there is no redundancy 
// in the calculation of the partial results. 
//-- 
function pow_mod($p, $q, $r) 
{ 
// Extract powers of 2 from $q 
$factors = array(); 
$div = $q; 
$power_of_two = 0; 
while(bccomp($div, "0") == BCCOMP_LARGER) 
{ 
$rem = bcmod($div, 2); 
$div = bcdiv($div, 2); 
if($rem) array_push($factors, $power_of_two); 
$power_of_two++; 
} 
// Calculate partial results for each factor, using each partial result as a 
// starting point for the next. This depends of the factors of two being 
// generated in increasing order. 
$partial_results = array(); 
$part_res = $p; 
$idx = 0; 
foreach($factors as $factor) 
{ 
while($idx < $factor) 
{ 
$part_res = bcpow($part_res, "2"); 
$part_res = bcmod($part_res, $r); 
$idx++; 
} 
array_push($partial_results, $part_res); 
} 
// Calculate final result 
$result = "1"; 
foreach($partial_results as $part_res) 
{ 
$result = bcmul($result, $part_res); 
$result = bcmod($result, $r); 
} 
return $result; 
} 
//-- 
// Function to add padding to a decrypted string 
// We need to know if this is a private or a public key operation [4] 
//-- 
function add_PKCS1_padding($data, $isPublicKey, $blocksize) 
{ 
$pad_length = $blocksize - 3 - strlen($data); 
if($isPublicKey) 
{ 
$block_type = "\x02"; 
$padding = ""; 
for($i = 0; $i < $pad_length; $i++) 
{ 
$rnd = mt_rand(1, 255); 
$padding .= chr($rnd); 
} 
} 
else 
{ 
$block_type = "\x01"; 
$padding = str_repeat("\xFF", $pad_length); 
} 
return "\x00" . $block_type . $padding . "\x00" . $data; 
} 
//-- 
// Remove padding from a decrypted string 
// See [4] for more details. 
//-- 
function remove_PKCS1_padding($data, $blocksize) 
{ 
//以下部分于原版的RSA有所不同,修复了原版的一个BUG 
//assert(strlen($data) == $blocksize); 
$data = substr($data, 1); 
// We cannot deal with block type 0 
if($data{0} == '\0') 
die("Block type 0 not implemented."); 
// Then the block type must be 1 or 2 
//assert(($data{0} == "\x01") || ($data{0} == "\x02")); 
// echo $data; 
// Remove the padding 
$i=1; 
while (1){ 
$offset = strpos($data, "\0", $i); 
if(!$offset){ 
$offset=$i; 
break; 
} 
$i=$offset+1; 
} 
//$offset = strpos($data, "\0", 100); 
return substr($data, $offset); 
} 
//-- 
// Remove "kyp" padding 
// (Non standard) 
//-- 
function remove_KYP_padding($data, $blocksize) 
{ 
assert(strlen($data) == $blocksize); 
$offset = strpos($data, "\0"); 
return substr($data, 0, $offset); 
} 
//-- 
// Convert binary data to a decimal number 
//-- 
function binary_to_number($data) 
{ 
$base = "256"; 
$radix = "1"; 
$result = "0"; 
for($i = strlen($data) - 1; $i >= 0; $i--) 
{ 
$digit = ord($data{$i}); 
$part_res = bcmul($digit, $radix); 
$result = bcadd($result, $part_res); 
$radix = bcmul($radix, $base); 
} 
return $result; 
} 
//-- 
// Convert a number back into binary form 
//-- 
function number_to_binary($number, $blocksize) 
{ 
$base = "256"; 
$result = ""; 
$div = $number; 
while($div > 0) 
{ 
$mod = bcmod($div, $base); 
$div = bcdiv($div, $base); 
$result = chr($mod) . $result; 
} 
return str_pad($result, $blocksize, "\x00", STR_PAD_LEFT); 
} 
?>

处理的PHP代码:
<?php 
//Decimal Data 
include "rsa.php"; 
$modulus='124124790696783899579957666732205416556275207289308772677367395397704314099727565633927507139389670490184904760526156031441045563225987129220634807383637837918320623518532877734472159024203477820731033762885040862183213160281165618500092483026873487507336293388981515466164416989192069833140532570993394388051.0000000000'; 
$private='59940207454900542501281722336097731406274284149290386158861762508911700758780200454438527029729836453810395133453343700246367853044479311924174899432036400630350527132581124575735909908195078492323048176864577497230467497768502277772070557874686662727818507841304646138785432507752788647631021854537869399041.0000000000'; 
$public="65537"; 
$keylength="1024"; 
//php encrypt create 
//$encrypted = rsa_encrypt("vzxcvz bdxf", $public, $modulus, $keylength); 
//$str= bin2hex($encrypted);//bin data to hex data 
$str=$_POST['ciphertext']; 
//echo $str."<br>"; 
$encrypted=convert($str); //hex data to bin data 
$decrypted = rsa_decrypt($encrypted, $private, $modulus, $keylength); 
echo $decrypted."<br>"; 
/** 
* 16 to 2 
* @param unknown_type $hexString 
* @return string|unknown 
*/ 
function convert($hexString) 
{ 
$hexLenght = strlen($hexString); 
// only hex numbers is allowed 
if ($hexLenght % 2 != 0 || preg_match("/[^\da-fA-F]/",$hexString)) return FALSE; 
unset($binString); 
for ($x = 1; $x <= $hexLenght/2; $x++) 
{ 
$binString .= chr(hexdec(substr($hexString,2 * $x - 2,2))); 
} 
return $binString; 
} 
?>

生成PRM文件及生产需要的密钥及公钥的PHP文件:
<?php 
//create pem file 
//run openssl genrsa -out key.pem 1024 
//This file is generated variables needed for the operation 
list($keylength, $modulus, $public, $private,$modulus_js,$private_js) = read_ssl_key("key.pem"); 
echo "keylength:(php and js)(private length)<br>"; 
echo $keylength; 
echo "<br>"; 
echo "modulus:(php)(10)(pubic key)<br>"; 
echo $modulus; 
echo "<br>"; 
echo "modulus:(js)(16)(pubic key)<br>"; 
echo $modulus_js; 
echo "<br>"; 
echo "public:(php)(10)(public exponent)<br>"; 
echo $public; 
echo "<br>"; 
echo "public:(js)(16)(public exponent)<br>"; 
echo "10001"; 
echo "<br>"; 
echo "private:(php)(10)(private key)<br>"; 
echo $private; 
echo "<br>"; 
echo "private:(js)(16)(private key)<br>"; 
echo $private_js; 
//function 
function read_ssl_key($filename) 
{ 
exec("openssl rsa -in $filename -text -noout", $raw); 
// read the key length 
$keylength = (int) expect($raw[0], "Private-Key: ("); 
// read the modulus 
expect($raw[1], "modulus:"); 
for($i = 2; $raw[$i][0] == ' '; $i++) $modulusRaw .= trim($raw[$i]); 
// read the public exponent 
$public = (int) expect($raw[$i], "publicExponent: "); 
// read the private exponent 
expect($raw[$i + 1], "privateExponent:"); 
for($i += 2; $raw[$i][0] == ' '; $i++) $privateRaw .= trim($raw[$i]); 
// Just to make sure 
expect($raw[$i], "prime1:"); 
// Conversion to decimal format for bcmath 
$modulus = bc_hexdec($modulusRaw); 
$private = bc_hexdec($privateRaw); 
return array($keylength, $modulus['php'], $public, $private['php'],$modulus['js'], $private['js']); 
} 
/* 
* Convert a hexadecimal number of the form "XX:YY:ZZ:..." to decimal 
* Uses BCmath, but the standard normal hexdec function for the components 
*/ 
function bc_hexdec($hex) 
{ 
$coefficients = explode(":", $hex); 
$result_js= implode("",$coefficients); 
$i = 0; 
$result = 0; 
foreach(array_reverse($coefficients) as $coefficient) 
{ 
$mult = bcpow(256, $i++); 
$result = bcadd($result, bcmul(hexdec($coefficient), $mult)); 
} 
return array('php'=>$result,'js'=>$result_js); 
} 
/* 
* If the string has the given prefix, return the remainder. 
* If not, die with an error 
*/ 
function expect($str, $prefix) 
{ 
if(substr($str, 0, strlen($prefix)) == $prefix) 
return substr($str, strlen($prefix)); 
else 
die("Error: expected $prefix"); 
}

整套加密及解密的方法都在上面了,本人的测试环境为php5.3+WIN7
上面所有文件下载:RSAFILE
PHP 相关文章推荐
PHP个人网站架设连环讲(三)
Oct 09 PHP
window+nginx+php环境配置 附配置搭配说明
Dec 29 PHP
PHP代码优化之成员变量获取速度对比
Feb 28 PHP
php Imagick获取图片RGB颜色值
Jul 28 PHP
PHP关联数组实现根据元素值删除元素的方法
Jun 26 PHP
Smarty简单生成表单元素的方法示例
May 23 PHP
php通过执行CutyCapt命令实现网页截图的方法
Sep 30 PHP
基于PHPexecl类生成复杂的报表表头示例
Oct 14 PHP
PHP命令空间namespace及use的用法小结
Nov 27 PHP
php 中phar包的使用教程详解
Oct 26 PHP
一次因composer错误使用引发的问题与解决
Mar 06 PHP
laravel unique验证、确认密码confirmed验证以及密码修改验证的方法
Oct 16 PHP
PHP 事件机制(2)
Mar 23 #PHP
php函数之子字符串替换&amp;#65279; str_replace
Mar 23 #PHP
php expects parameter 1 to be resource, array given 错误
Mar 23 #PHP
php去掉字符串的最后一个字符附substr()的用法
Mar 23 #PHP
PHPUnit PHP测试框架安装方法
Mar 23 #PHP
开启CURL扩展,让服务器支持PHP curl函数(远程采集)
Mar 19 #PHP
windows下开发并编译PHP扩展的方法
Mar 18 #PHP
You might like
mac系统下为 php 添加 pcntl 扩展
2016/08/28 PHP
PHP 配置后台登录以及模板引入
2017/01/24 PHP
浅谈PHP中new self()和new static()的区别
2017/08/11 PHP
PHP高精确度运算BC函数库实例详解
2017/08/15 PHP
PHP连接MySQL数据库的三种方式实例分析【mysql、mysqli、pdo】
2019/11/04 PHP
fireworks菜单生成器mm_menu.js在 IE 7.0 显示问题的解决方法
2009/10/20 Javascript
js 蒙版进度条(结合图片)
2010/03/10 Javascript
javascript 主动派发事件总结
2011/08/09 Javascript
浅谈JavaScript编程语言的编码规范
2011/10/21 Javascript
基于jquery实现的文字淡入淡出效果
2013/11/14 Javascript
js设置控件的隐藏与显示的两种方法
2014/08/21 Javascript
JS实现点击上移下移LI行数据的方法
2015/08/05 Javascript
Jquery Ajax Error 调试错误的技巧
2015/11/20 Javascript
vue实现nav导航栏的方法
2017/12/13 Javascript
小程序实现页面顶部选项卡效果
2018/11/06 Javascript
JS/HTML5游戏常用算法之追踪算法实例详解
2018/12/12 Javascript
NodeJS http模块用法示例【创建web服务器/客户端】
2019/11/05 NodeJs
基于python内置函数与匿名函数详解
2018/01/09 Python
Python爬虫将爬取的图片写入world文档的方法
2018/11/07 Python
Python3 max()函数基础用法
2019/02/19 Python
Python3.8中使用f-strings调试
2019/05/22 Python
全网首秀之Pycharm十大实用技巧(推荐)
2020/04/27 Python
python如何实时获取tcpdump输出
2020/09/16 Python
Python机器学习工具scikit-learn的使用笔记
2021/01/28 Python
美国本地交易和折扣网站:LocalFlavor.com
2017/10/26 全球购物
选购国际女性时装设计师品牌:IFCHIC(支持中文)
2018/04/12 全球购物
美国体育用品商店:Academy Sports + Outdoors
2020/01/04 全球购物
活动总结的格式
2014/05/07 职场文书
关于建议书的格式范文
2014/05/20 职场文书
电子专业求职信
2014/06/19 职场文书
人力资源管理专业自荐书
2014/07/07 职场文书
小学生国庆65周年演讲稿范文(2篇)
2014/09/21 职场文书
2014年除四害工作总结
2014/12/06 职场文书
奖学金个人总结
2015/03/04 职场文书
Python数据分析入门之教你怎么搭建环境
2021/05/13 Python
Mysql使用全文索引(FullText index)的实例代码
2022/04/03 MySQL