python 生成正态分布数据,并绘图和解析


Posted in Python onDecember 21, 2020

1、生成正态分布数据并绘制概率分布图

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt


# 根据均值、标准差,求指定范围的正态分布概率值
def normfun(x, mu, sigma):
  pdf = np.exp(-((x - mu)**2)/(2*sigma**2)) / (sigma * np.sqrt(2*np.pi))
  return pdf


# result = np.random.randint(-65, 80, size=100) # 最小值,最大值,数量
result = np.random.normal(15, 44, 100) # 均值为0.5,方差为1
print(result)

x = np.arange(min(result), max(result), 0.1)
# 设定 y 轴,载入刚才的正态分布函数
print(result.mean(), result.std())
y = normfun(x, result.mean(), result.std())
plt.plot(x, y) # 这里画出理论的正态分布概率曲线

# 这里画出实际的参数概率与取值关系
plt.hist(result, bins=10, rwidth=0.8, density=True) # bins个柱状图,宽度是rwidth(0~1),=1没有缝隙
plt.title('distribution')
plt.xlabel('temperature')
plt.ylabel('probability')
# 输出
plt.show() # 最后图片的概率和不为1是因为正态分布是从负无穷到正无穷,这里指截取了数据最小值到最大值的分布

python 生成正态分布数据,并绘图和解析

根据范围生成正态分布:

result = np.random.randint(-65, 80, size=100) # 最小值,最大值,数量

根据均值、方差生成正态分布:

result = np.random.normal(15, 44, 100) # 均值为0.5,方差为1

2、判断一个序列是否符合正态分布

import numpy as np
from scipy import stats


pts = 1000
np.random.seed(28041990)
a = np.random.normal(0, 1, size=pts) # 生成1个正态分布,均值为0,标准差为1,100个点
b = np.random.normal(2, 1, size=pts) # 生成1个正态分布,均值为2,标准差为1, 100个点
x = np.concatenate((a, b)) # 把两个正态分布连接起来,所以理论上变成了非正态分布序列
k2, p = stats.normaltest(x)
alpha = 1e-3
print("p = {:g}".format(p))


# 原假设:x是一个正态分布
if p < alpha: # null hypothesis: x comes from a normal distribution
  print("The null hypothesis can be rejected") # 原假设可被拒绝,即不是正态分布
else:
  print("The null hypothesis cannot be rejected") # 原假设不可被拒绝,即使正态分布

3、求置信区间、异常值

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import pandas as pd


# 求列表数据的异常点
def get_outer_data(data_list):
  df = pd.DataFrame(data_list, columns=['value'])
  df = df.iloc[:, 0]
  # 计算下四分位数和上四分位
  Q1 = df.quantile(q=0.25)
  Q3 = df.quantile(q=0.75)

  # 基于1.5倍的四分位差计算上下须对应的值
  low_whisker = Q1 - 1.5 * (Q3 - Q1)
  up_whisker = Q3 + 1.5 * (Q3 - Q1)

  # 寻找异常点
  kk = df[(df > up_whisker) | (df < low_whisker)]
  data1 = pd.DataFrame({'id': kk.index, '异常值': kk})
  return data1


N = 100
result = np.random.normal(0, 1, N)
# result = np.random.randint(-65, 80, size=N) # 最小值,最大值,数量
mean, std = result.mean(), result.std(ddof=1) # 求均值和标准差

# 计算置信区间,这里的0.9是置信水平
conf_intveral = stats.norm.interval(0.9, loc=mean, scale=std) # 90%概率
print('置信区间:', conf_intveral)

x = np.arange(0, len(result), 1)

# 求异常值
outer = get_outer_data(result)
print(outer, type(outer))
x1 = outer.iloc[:, 0]
y1 = outer.iloc[:, 1]
plt.scatter(x1, y1, marker='x', color='r') # 所有离散点
plt.scatter(x, result, marker='.', color='g') # 异常点
plt.plot([0, len(result)], [conf_intveral[0], conf_intveral[0]])
plt.plot([0, len(result)], [conf_intveral[1], conf_intveral[1]])
plt.show()

python 生成正态分布数据,并绘图和解析

4、采样点离散图和概率图

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import pandas as pd
import time


print(time.strftime('%Y-%m-%D %H:%M:%S'))


# 根据均值、标准差,求指定范围的正态分布概率值
def _normfun(x, mu, sigma):
  pdf = np.exp(-((x - mu)**2)/(2*sigma**2)) / (sigma * np.sqrt(2*np.pi))
  return pdf


# 求列表数据的异常点
def get_outer_data(data_list):
  df = pd.DataFrame(data_list, columns=['value'])
  df = df.iloc[:, 0]
  # 计算下四分位数和上四分位
  Q1 = df.quantile(q=0.25)
  Q3 = df.quantile(q=0.75)

  # 基于1.5倍的四分位差计算上下须对应的值
  low_whisker = Q1 - 1.5 * (Q3 - Q1)
  up_whisker = Q3 + 1.5 * (Q3 - Q1)

  # 寻找异常点
  kk = df[(df > up_whisker) | (df < low_whisker)]
  data1 = pd.DataFrame({'id': kk.index, '异常值': kk})
  return data1


N = 100
result = np.random.normal(0, 1, N)
# result = np.random.randint(-65, 80, size=N) # 最小值,最大值,数量
# result = [100]*100 # 取值全相同
# result = np.array(result)
mean, std = result.mean(), result.std(ddof=1) # 求均值和标准差
# 计算置信区间,这里的0.9是置信水平
if std == 0: # 如果所有值都相同即标准差为0则无法计算置信区间
  conf_intveral = [min(result)-1, max(result)+1]
else:
  conf_intveral = stats.norm.interval(0.9, loc=mean, scale=std) # 90%概率
# print('置信区间:', conf_intveral)
# 求异常值
outer = get_outer_data(result)
# 绘制离散图
fig = plt.figure()
fig.add_subplot(2, 1, 1)
plt.subplots_adjust(hspace=0.3)
x = np.arange(0, len(result), 1)
plt.scatter(x, result, marker='.', color='g') # 画所有离散点
plt.scatter(outer.iloc[:, 0], outer.iloc[:, 1], marker='x', color='r') # 画异常离散点
plt.plot([0, len(result)], [conf_intveral[0], conf_intveral[0]]) # 置信区间线条
plt.plot([0, len(result)], [conf_intveral[1], conf_intveral[1]]) # 置信区间线条
plt.text(0, conf_intveral[0], '{:.2f}'.format(conf_intveral[0])) # 置信区间数字显示
plt.text(0, conf_intveral[1], '{:.2f}'.format(conf_intveral[1])) # 置信区间数字显示
info = 'outer count:{}'.format(len(outer.iloc[:, 0]))
plt.text(min(x), max(result)-((max(result)-min(result)) / 2), info) # 异常点数显示
plt.xlabel('sample count')
plt.ylabel('value')
# 绘制概率图
if std != 0: # 如果所有取值都相同
  fig.add_subplot(2, 1, 2)
  x = np.arange(min(result), max(result), 0.1)
  y = _normfun(x, result.mean(), result.std())
  plt.plot(x, y) # 这里画出理论的正态分布概率曲线
  plt.hist(result, bins=10, rwidth=0.8, density=True) # bins个柱状图,宽度是rwidth(0~1),=1没有缝隙
  info = 'mean:{:.2f}\nstd:{:.2f}\nmode num:{:.2f}'.format(mean, std, np.median(result))
  plt.text(min(x), max(y) / 2, info)
  plt.xlabel('value')
  plt.ylabel('Probability')
else:
  fig.add_subplot(2, 1, 2)
  info = 'non-normal distribution!!\nmean:{:.2f}\nstd:{:.2f}\nmode num:{:.2f}'.format(mean, std, np.median(result))
  plt.text(0.5, 0.5, info)
  plt.xlabel('value')
  plt.ylabel('Probability')
plt.savefig('./distribution.jpg')
plt.show()

print(time.strftime('%Y-%m-%D %H:%M:%S'))

python 生成正态分布数据,并绘图和解析

以上就是python 生成正态分布数据,并绘图和解析的详细内容,更多关于python 正态分布的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
在 Django/Flask 开发服务器上使用 HTTPS
Jul 03 Python
python调用Moxa PCOMM Lite通过串口Ymodem协议实现发送文件
Aug 15 Python
python服务器与android客户端socket通信实例
Nov 12 Python
python实现逆波兰计算表达式实例详解
May 06 Python
用C++封装MySQL的API的教程
May 06 Python
python append、extend与insert的区别
Oct 13 Python
Python控制键盘鼠标pynput的详细用法
Jan 28 Python
Python3中编码与解码之Unicode与bytes的讲解
Feb 28 Python
Python3 执行Linux Bash命令的方法
Jul 12 Python
Python异步编程之协程任务的调度操作实例分析
Feb 01 Python
Python基于os.environ从windows获取环境变量
Jun 09 Python
Python selenium环境搭建实现过程解析
Sep 08 Python
python statsmodel的使用
Dec 21 #Python
Python 实现集合Set的示例
Dec 21 #Python
Python 实现二叉查找树的示例代码
Dec 21 #Python
如何利用Python matplotlib绘制雷达图
Dec 21 #Python
OpenCV+python实现膨胀和腐蚀的示例
Dec 21 #Python
python opencv肤色检测的实现示例
Dec 21 #Python
OpenCV+Python3.5 简易手势识别的实现
Dec 21 #Python
You might like
destoon二次开发模板及调用语法汇总
2014/06/21 PHP
php有道翻译api调用方法实例
2014/12/22 PHP
php自动加载方式集合
2016/04/04 PHP
微信接口生成带参数的二维码
2017/07/31 PHP
php 与 nginx 的处理方式及nginx与php-fpm通信的两种方式
2018/09/28 PHP
js 目录列举函数
2008/11/06 Javascript
js中scrollHeight,scrollWidth,scrollLeft,scrolltop等差别介绍
2012/05/16 Javascript
js中运算符&amp;&amp; 和 || 的使用记录
2014/08/21 Javascript
Javascript学习笔记之数组的遍历和 length 属性
2014/11/23 Javascript
JavaScript基础知识之方法汇总结
2016/01/24 Javascript
jquery实现可旋转可拖拽的文字效果代码
2016/01/27 Javascript
EasyUI的DataGrid每行数据添加操作按钮的实现代码
2017/08/22 Javascript
详解vue+css3做交互特效的方法
2017/11/20 Javascript
详解vue中async-await的使用误区
2018/12/05 Javascript
使用vue自定义指令开发表单验证插件validate.js
2019/05/23 Javascript
通过实例解析JavaScript常用排序算法
2020/09/02 Javascript
在vue中实现清除echarts上次保留的数据(亲测有效)
2020/09/09 Javascript
使用python分析git log日志示例
2014/02/27 Python
Python urlopen()函数 示例分享
2014/06/12 Python
基于Python实现的百度贴吧网络爬虫实例
2015/04/17 Python
Python实现螺旋矩阵的填充算法示例
2017/12/28 Python
Python实现压缩文件夹与解压缩zip文件的方法
2018/09/01 Python
python之pyqt5通过按钮改变Label的背景颜色方法
2019/06/13 Python
Python使用__new__()方法为对象分配内存及返回对象的引用示例
2019/09/20 Python
Python定义函数实现累计求和操作
2020/05/03 Python
台湾最大网路书店:博客来
2018/03/18 全球购物
俄罗斯购买内衣网站:Trusiki
2020/08/22 全球购物
Java基础面试题
2014/07/19 面试题
材料化学应届生求职信
2013/10/09 职场文书
教师党员个人整改措施材料
2014/09/16 职场文书
工作经验交流材料
2014/12/30 职场文书
物业工程部主管岗位职责
2015/04/16 职场文书
岁月神偷观后感
2015/06/11 职场文书
如何做好员工培训计划?
2019/07/09 职场文书
JavaScript数组reduce()方法的语法与实例解析
2021/07/07 Javascript
关于SpringBoot 使用 Redis 分布式锁解决并发问题
2021/11/17 Redis