python 生成正态分布数据,并绘图和解析


Posted in Python onDecember 21, 2020

1、生成正态分布数据并绘制概率分布图

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt


# 根据均值、标准差,求指定范围的正态分布概率值
def normfun(x, mu, sigma):
  pdf = np.exp(-((x - mu)**2)/(2*sigma**2)) / (sigma * np.sqrt(2*np.pi))
  return pdf


# result = np.random.randint(-65, 80, size=100) # 最小值,最大值,数量
result = np.random.normal(15, 44, 100) # 均值为0.5,方差为1
print(result)

x = np.arange(min(result), max(result), 0.1)
# 设定 y 轴,载入刚才的正态分布函数
print(result.mean(), result.std())
y = normfun(x, result.mean(), result.std())
plt.plot(x, y) # 这里画出理论的正态分布概率曲线

# 这里画出实际的参数概率与取值关系
plt.hist(result, bins=10, rwidth=0.8, density=True) # bins个柱状图,宽度是rwidth(0~1),=1没有缝隙
plt.title('distribution')
plt.xlabel('temperature')
plt.ylabel('probability')
# 输出
plt.show() # 最后图片的概率和不为1是因为正态分布是从负无穷到正无穷,这里指截取了数据最小值到最大值的分布

python 生成正态分布数据,并绘图和解析

根据范围生成正态分布:

result = np.random.randint(-65, 80, size=100) # 最小值,最大值,数量

根据均值、方差生成正态分布:

result = np.random.normal(15, 44, 100) # 均值为0.5,方差为1

2、判断一个序列是否符合正态分布

import numpy as np
from scipy import stats


pts = 1000
np.random.seed(28041990)
a = np.random.normal(0, 1, size=pts) # 生成1个正态分布,均值为0,标准差为1,100个点
b = np.random.normal(2, 1, size=pts) # 生成1个正态分布,均值为2,标准差为1, 100个点
x = np.concatenate((a, b)) # 把两个正态分布连接起来,所以理论上变成了非正态分布序列
k2, p = stats.normaltest(x)
alpha = 1e-3
print("p = {:g}".format(p))


# 原假设:x是一个正态分布
if p < alpha: # null hypothesis: x comes from a normal distribution
  print("The null hypothesis can be rejected") # 原假设可被拒绝,即不是正态分布
else:
  print("The null hypothesis cannot be rejected") # 原假设不可被拒绝,即使正态分布

3、求置信区间、异常值

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import pandas as pd


# 求列表数据的异常点
def get_outer_data(data_list):
  df = pd.DataFrame(data_list, columns=['value'])
  df = df.iloc[:, 0]
  # 计算下四分位数和上四分位
  Q1 = df.quantile(q=0.25)
  Q3 = df.quantile(q=0.75)

  # 基于1.5倍的四分位差计算上下须对应的值
  low_whisker = Q1 - 1.5 * (Q3 - Q1)
  up_whisker = Q3 + 1.5 * (Q3 - Q1)

  # 寻找异常点
  kk = df[(df > up_whisker) | (df < low_whisker)]
  data1 = pd.DataFrame({'id': kk.index, '异常值': kk})
  return data1


N = 100
result = np.random.normal(0, 1, N)
# result = np.random.randint(-65, 80, size=N) # 最小值,最大值,数量
mean, std = result.mean(), result.std(ddof=1) # 求均值和标准差

# 计算置信区间,这里的0.9是置信水平
conf_intveral = stats.norm.interval(0.9, loc=mean, scale=std) # 90%概率
print('置信区间:', conf_intveral)

x = np.arange(0, len(result), 1)

# 求异常值
outer = get_outer_data(result)
print(outer, type(outer))
x1 = outer.iloc[:, 0]
y1 = outer.iloc[:, 1]
plt.scatter(x1, y1, marker='x', color='r') # 所有离散点
plt.scatter(x, result, marker='.', color='g') # 异常点
plt.plot([0, len(result)], [conf_intveral[0], conf_intveral[0]])
plt.plot([0, len(result)], [conf_intveral[1], conf_intveral[1]])
plt.show()

python 生成正态分布数据,并绘图和解析

4、采样点离散图和概率图

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import pandas as pd
import time


print(time.strftime('%Y-%m-%D %H:%M:%S'))


# 根据均值、标准差,求指定范围的正态分布概率值
def _normfun(x, mu, sigma):
  pdf = np.exp(-((x - mu)**2)/(2*sigma**2)) / (sigma * np.sqrt(2*np.pi))
  return pdf


# 求列表数据的异常点
def get_outer_data(data_list):
  df = pd.DataFrame(data_list, columns=['value'])
  df = df.iloc[:, 0]
  # 计算下四分位数和上四分位
  Q1 = df.quantile(q=0.25)
  Q3 = df.quantile(q=0.75)

  # 基于1.5倍的四分位差计算上下须对应的值
  low_whisker = Q1 - 1.5 * (Q3 - Q1)
  up_whisker = Q3 + 1.5 * (Q3 - Q1)

  # 寻找异常点
  kk = df[(df > up_whisker) | (df < low_whisker)]
  data1 = pd.DataFrame({'id': kk.index, '异常值': kk})
  return data1


N = 100
result = np.random.normal(0, 1, N)
# result = np.random.randint(-65, 80, size=N) # 最小值,最大值,数量
# result = [100]*100 # 取值全相同
# result = np.array(result)
mean, std = result.mean(), result.std(ddof=1) # 求均值和标准差
# 计算置信区间,这里的0.9是置信水平
if std == 0: # 如果所有值都相同即标准差为0则无法计算置信区间
  conf_intveral = [min(result)-1, max(result)+1]
else:
  conf_intveral = stats.norm.interval(0.9, loc=mean, scale=std) # 90%概率
# print('置信区间:', conf_intveral)
# 求异常值
outer = get_outer_data(result)
# 绘制离散图
fig = plt.figure()
fig.add_subplot(2, 1, 1)
plt.subplots_adjust(hspace=0.3)
x = np.arange(0, len(result), 1)
plt.scatter(x, result, marker='.', color='g') # 画所有离散点
plt.scatter(outer.iloc[:, 0], outer.iloc[:, 1], marker='x', color='r') # 画异常离散点
plt.plot([0, len(result)], [conf_intveral[0], conf_intveral[0]]) # 置信区间线条
plt.plot([0, len(result)], [conf_intveral[1], conf_intveral[1]]) # 置信区间线条
plt.text(0, conf_intveral[0], '{:.2f}'.format(conf_intveral[0])) # 置信区间数字显示
plt.text(0, conf_intveral[1], '{:.2f}'.format(conf_intveral[1])) # 置信区间数字显示
info = 'outer count:{}'.format(len(outer.iloc[:, 0]))
plt.text(min(x), max(result)-((max(result)-min(result)) / 2), info) # 异常点数显示
plt.xlabel('sample count')
plt.ylabel('value')
# 绘制概率图
if std != 0: # 如果所有取值都相同
  fig.add_subplot(2, 1, 2)
  x = np.arange(min(result), max(result), 0.1)
  y = _normfun(x, result.mean(), result.std())
  plt.plot(x, y) # 这里画出理论的正态分布概率曲线
  plt.hist(result, bins=10, rwidth=0.8, density=True) # bins个柱状图,宽度是rwidth(0~1),=1没有缝隙
  info = 'mean:{:.2f}\nstd:{:.2f}\nmode num:{:.2f}'.format(mean, std, np.median(result))
  plt.text(min(x), max(y) / 2, info)
  plt.xlabel('value')
  plt.ylabel('Probability')
else:
  fig.add_subplot(2, 1, 2)
  info = 'non-normal distribution!!\nmean:{:.2f}\nstd:{:.2f}\nmode num:{:.2f}'.format(mean, std, np.median(result))
  plt.text(0.5, 0.5, info)
  plt.xlabel('value')
  plt.ylabel('Probability')
plt.savefig('./distribution.jpg')
plt.show()

print(time.strftime('%Y-%m-%D %H:%M:%S'))

python 生成正态分布数据,并绘图和解析

以上就是python 生成正态分布数据,并绘图和解析的详细内容,更多关于python 正态分布的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
python实现红包裂变算法
Feb 16 Python
Python实现批量更换指定目录下文件扩展名的方法
Sep 19 Python
Python3 实现随机生成一组不重复数并按行写入文件
Apr 09 Python
Python实现的tcp端口检测操作示例
Jul 24 Python
python模块导入的细节详解
Dec 10 Python
python中比较两个列表的实例方法
Jul 04 Python
python elasticsearch从创建索引到写入数据的全过程
Aug 04 Python
python3多线程知识点总结
Sep 26 Python
python网络爬虫 Scrapy中selenium用法详解
Sep 28 Python
服务器端jupyter notebook映射到本地浏览器的操作
Apr 14 Python
Django Form设置文本框为readonly操作
Jul 03 Python
Python爬虫教程之利用正则表达式匹配网页内容
Dec 08 Python
python statsmodel的使用
Dec 21 #Python
Python 实现集合Set的示例
Dec 21 #Python
Python 实现二叉查找树的示例代码
Dec 21 #Python
如何利用Python matplotlib绘制雷达图
Dec 21 #Python
OpenCV+python实现膨胀和腐蚀的示例
Dec 21 #Python
python opencv肤色检测的实现示例
Dec 21 #Python
OpenCV+Python3.5 简易手势识别的实现
Dec 21 #Python
You might like
php中实现获取随机数组列表的自定义函数
2015/04/02 PHP
php过滤输入操作之htmlentities与htmlspecialchars用法分析
2017/02/17 PHP
Laravel 5.2 文档 数据库 ―― 起步介绍
2019/10/21 PHP
laravel框架select2多选插件初始化默认选中项操作示例
2020/02/18 PHP
javascript 函数调用规则
2009/08/26 Javascript
javascript中简单的进制转换代码实例
2013/10/26 Javascript
Jquery的Tabs内容轮换效果实现代码,几行搞定
2014/02/12 Javascript
jquery选择器大全 全面详解jquery选择器
2014/03/06 Javascript
JS对字符串编码的几种方式使用指南
2015/05/14 Javascript
js判断手机号运营商的方法
2015/10/23 Javascript
javascript实现瀑布流加载图片原理
2016/02/02 Javascript
深入理解node exports和module.exports区别
2016/06/01 Javascript
jQuery简单倒计时效果完整示例
2016/09/20 Javascript
bootstarp modal框居中显示的实现代码
2017/02/18 Javascript
利用JavaScript实现栈的数据结构示例代码
2017/08/02 Javascript
深入剖析Node.js cluster模块
2018/05/23 Javascript
详解在Angular4中使用ng2-baidu-map的方法
2019/06/19 Javascript
[04:22]DOTA2上海特级锦标赛主赛事第四日TOP10
2016/03/06 DOTA
Python中使用OpenCV库来进行简单的气象学遥感影像计算
2016/02/19 Python
python 写的一个爬虫程序源码
2016/02/28 Python
python中的lambda表达式用法详解
2016/06/22 Python
深入浅析Python中join 和 split详解(推荐)
2016/06/30 Python
pandas dataframe的合并实现(append, merge, concat)
2019/06/24 Python
Python安装与卸载流程详细步骤(图解)
2020/02/20 Python
英格兰橄榄球商店:England Rugby Store
2016/12/17 全球购物
美国最大的电子宠物训练产品制造商:PetSafe
2018/10/12 全球购物
Vilebrequin美国官方网上商店:法国豪华泳装品牌
2020/02/22 全球购物
注塑工厂厂长岗位职责
2013/12/02 职场文书
电子商务专业学生职业生涯规划
2014/03/07 职场文书
校外活动方案
2014/08/28 职场文书
党员学习群众路线教育实践活动对照检查材料
2014/09/23 职场文书
工作表现证明
2015/06/15 职场文书
《假如》教学反思
2016/02/17 职场文书
解决pytorch 损失函数中输入输出不匹配的问题
2021/06/05 Python
Python帮你解决手机qq微信内存占用太多问题
2022/02/15 Python
【海涛教你打dota】体验一超神发条:咱是抢盾专业户
2022/04/01 DOTA