为什么从Python 3.6开始字典有序并效率更高


Posted in Python onJuly 15, 2019

在Python 3.5(含)以前,字典是不能保证顺序的,键值对A先插入字典,键值对B后插入字典,但是当你打印字典的Keys列表时,你会发现B可能在A的前面。

但是从Python 3.6开始,字典是变成有顺序的了。你先插入键值对A,后插入键值对B,那么当你打印Keys列表的时候,你就会发现B在A的后面。

不仅如此,从Python 3.6开始,下面的三种遍历操作,效率要高于Python 3.5之前:

for key in 字典

for value in 字典.values()

for key, value in 字典.items()

从Python 3.6开始,字典占用内存空间的大小,视字典里面键值对的个数,只有原来的30%~95%。

Python 3.6到底对字典做了什么优化呢?为了说明这个问题,我们需要先来说一说,在Python 3.5(含)之前,字典的底层原理。

当我们初始化一个空字典的时候,CPython的底层会初始化一个二维数组,这个数组有8行,3列,如下面的示意图所示:

my_dict = {}

'''
此时的内存示意图
[[---, ---, ---],
[---, ---, ---],
[---, ---, ---],
[---, ---, ---],
[---, ---, ---],
[---, ---, ---],
[---, ---, ---],
[---, ---, ---]]
'''

现在,我们往字典里面添加一个数据:

my_dict['name'] = 'kingname'

'''
此时的内存示意图
[[---, ---, ---],
[---, ---, ---],
[---, ---, ---],
[---, ---, ---],
[---, ---, ---],
[1278649844881305901, 指向name的指针, 指向kingname的指针],
[---, ---, ---],
[---, ---, ---]]
'''

这里解释一下,为什么添加了一个键值对以后,内存变成了这个样子:

首先我们调用Python 的hash函数,计算name这个字符串在当前运行时的hash值:

>>> hash('name')
1278649844881305901

特别注意,我这里强调了『当前运行时』,这是因为,Python自带的这个hash函数,和我们传统上认为的Hash函数是不一样的。Python自带的这个hash函数计算出来的值,只能保证在每一个运行时的时候不变,但是当你关闭Python再重新打开,那么它的值就可能会改变,如下图所示:

为什么从Python 3.6开始字典有序并效率更高

假设在某一个运行时里面,hash('name')的值为1278649844881305901。现在我们要把这个数对8取余数:

>>> 1278649844881305901 % 8
5

余数为5,那么就把它放在刚刚初始化的二维数组中,下标为5的这一行。由于name和kingname是两个字符串,所以底层C语言会使用两个字符串变量存放这两个值,然后得到他们对应的指针。于是,我们这个二维数组下标为5的这一行,第一个值为name的hash值,第二个值为name这个字符串所在的内存的地址(指针就是内存地址),第三个值为kingname这个字符串所在的内存的地址。

现在,我们再来插入两个键值对:

my_dict['age'] = 26
my_dict['salary'] = 999999

'''
此时的内存示意图
[[-4234469173262486640, 指向salary的指针, 指向999999的指针],
[1545085610920597121, 执行age的指针, 指向26的指针],
[---, ---, ---],
[---, ---, ---],
[---, ---, ---],
[1278649844881305901, 指向name的指针, 指向kingname的指针],
[---, ---, ---],
[---, ---, ---]]
'''

那么字典怎么读取数据呢?首先假设我们要读取age对应的值。

此时,Python先计算在当前运行时下面,age对应的Hash值是多少:

>>> hash('age')
1545085610920597121

余数为1,那么二维数组里面,下标为1的这一行就是需要的键值对。直接返回这一行第三个指针对应的内存中的值,就是age对应的值26。

当你要循环遍历字典的Key的时候,Python底层会遍历这个二维数组,如果当前行有数据,那么就返回Key指针对应的内存里面的值。如果当前行没有数据,那么就跳过。所以总是会遍历整个二位数组的每一行。

每一行有三列,每一列占用8byte的内存空间,所以每一行会占用24byte的内存空间。

由于Hash值取余数以后,余数可大可小,所以字典的Key并不是按照插入的顺序存放的。

注意,这里我省略了与本文没有太大关系的两个点:

  1. 开放寻址,当两个不同的Key,经过Hash以后,再对8取余数,可能余数会相同。此时Python为了不覆盖之前已有的值,就会使用开放寻址技术重新寻找一个新的位置存放这个新的键值对。
  2. 当字典的键值对数量超过当前数组长度的2/3时,数组会进行扩容,8行变成16行,16行变成32行。长度变了以后,原来的余数位置也会发生变化,此时就需要移动原来位置的数据,导致插入效率变低。

在Python 3.6以后,字典的底层数据结构发生了变化,现在当你初始化一个空的字典以后,它在底层是这样的:

my_dict = {}

'''
此时的内存示意图
indices = [None, None, None, None, None, None, None, None]

entries = []
'''

当你初始化一个字典以后,Python单独生成了一个长度为8的一维数组。然后又生成了一个空的二维数组。

现在,我们往字典里面添加一个键值对:

my_dict['name'] = 'kingname'

'''
此时的内存示意图
indices = [None, 0, None, None, None, None, None, None]

entries = [[-5954193068542476671, 指向name的指针, 执行kingname的指针]]
'''

为什么内存会变成这个样子呢?我们来一步一步地看:

在当前运行时,name这个字符串的hash值为-5954193068542476671,这个值对8取余数是1:

>>> hash('name')
-5954193068542476671
>>> hash('name') % 8
1

所以,我们把indices这个一维数组里面,下标为1的位置修改为0。

这里的0是什么意思呢?0是二位数组entries的索引。现在entries里面只有一行,就是我们刚刚添加的这个键值对的三个数据:name的hash值、指向name的指针和指向kinganme的指针。所以indices里面填写的数字0,就是刚刚我们插入的这个键值对的数据在二位数组里面的行索引。

好,现在我们再来插入两条数据:

my_dict['address'] = 'xxx'
my_dict['salary'] = 999999

'''
此时的内存示意图
indices = [1, 0, None, None, None, None, 2, None]

entries = [[-5954193068542476671, 指向name的指针, 执行kingname的指针],
     [9043074951938101872, 指向address的指针,指向xxx的指针],
     [7324055671294268046, 指向salary的指针, 指向999999的指针]
     ]
'''

现在如果我要读取数据怎么办呢?假如我要读取salary的值,那么首先计算salary的hash值,以及这个值对8的余数:

>>> hash('salary')
7324055671294268046
>>> hash('salary') % 8
6

那么我就去读indices下标为6的这个值。这个值为2.

然后再去读entries里面,下标为2的这一行的数据,也就是salary对应的数据了。

新的这种方式,当我要插入新的数据的时候,始终只是往entries的后面添加数据,这样就能保证插入的顺序。当我们要遍历字典的Keys和Values的时候,直接遍历entries即可,里面每一行都是有用的数据,不存在跳过的情况,减少了遍历的个数。

老的方式,当二维数组有8行的时候,即使有效数据只有3行,但它占用的内存空间还是 8 * 24 = 192 byte。但使用新的方式,如果只有三行有效数据,那么entries也就只有3行,占用的空间为3 * 24 =72 byte,而indices由于只是一个一维的数组,只占用8 byte,所以一共占用 80 byte。内存占用只有原来的41%。

参考:[ Python-Dev] More compact dictionaries with faster iteration

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对三水点靠木的支持。

Python 相关文章推荐
python爬虫框架scrapy实战之爬取京东商城进阶篇
Apr 24 Python
python中Matplotlib实现绘制3D图的示例代码
Sep 04 Python
Python使用xlwt模块操作Excel的方法详解
Mar 27 Python
Python把csv数据写入list和字典类型的变量脚本方法
Jun 15 Python
基于python代码实现简易滤除数字的方法
Jul 17 Python
启动Atom并运行python文件的步骤
Nov 09 Python
python如何获取apk的packagename和activity
Jan 10 Python
Python selenium自动化测试模型图解
Apr 15 Python
使用Python防止SQL注入攻击的实现示例
May 21 Python
Kears 使用:通过回调函数保存最佳准确率下的模型操作
Jun 17 Python
python爬虫利用selenium实现自动翻页爬取某鱼数据的思路详解
Dec 22 Python
Python 可迭代对象 iterable的具体使用
Aug 07 Python
django settings.py 配置文件及介绍
Jul 15 #Python
python项目对接钉钉SDK的实现
Jul 15 #Python
用Python识别人脸,人种等各种信息
Jul 15 #Python
django中账号密码验证登陆功能的实现方法
Jul 15 #Python
python tkinter窗口最大化的实现
Jul 15 #Python
在pycharm下设置自己的个性模版方法
Jul 15 #Python
Pycharm新建模板默认添加个人信息的实例
Jul 15 #Python
You might like
php中文件上传的安全问题
2006/10/09 PHP
安装APACHE
2007/01/15 PHP
PHP逐行输出(ob_flush与flush的组合)
2012/02/04 PHP
Yii结合CKEditor实现图片上传功能
2014/06/13 PHP
PHP数组对象与Json转换操作实例分析
2019/10/22 PHP
用js实现计算代码行数的简单方法附代码
2007/08/13 Javascript
jquery+json实现的搜索加分页效果
2010/03/31 Javascript
Prototype的Class.create函数解析
2011/09/22 Javascript
cookie 最近浏览记录(中文escape转码)具体实现
2013/06/08 Javascript
js字符串转换成数字与数字转换成字符串的实现方法
2014/01/08 Javascript
JS将数字转换成三位逗号分隔的样式(示例代码)
2014/02/19 Javascript
jQuery ajax提交Form表单实例(附demo源码)
2016/04/06 Javascript
对Angular.js Controller如何进行单元测试
2016/10/25 Javascript
vue.js加载新的内容(实例代码)
2017/06/01 Javascript
WebGL学习教程之Three.js学习笔记(第一篇)
2019/04/25 Javascript
解决Layui中layer报错的问题
2019/09/03 Javascript
vue+ts下对axios的封装实现
2020/02/18 Javascript
python基于socket实现网络广播的方法
2015/04/29 Python
初步剖析C语言编程中的结构体
2016/01/16 Python
Python+树莓派+YOLO打造一款人工智能照相机
2018/01/02 Python
python 列表中[ ]中冒号‘:’的作用
2019/04/30 Python
python3中关于excel追加写入格式被覆盖问题(实例代码)
2020/01/10 Python
Python使用enumerate获取迭代元素下标
2020/02/03 Python
parser.add_argument中的action使用
2020/04/20 Python
查看jupyter notebook每个单元格运行时间实例
2020/04/22 Python
基于Python下载网络图片方法汇总代码实例
2020/06/24 Python
data:image data url 文件转为Blob上传后端的方法
2019/07/16 HTML / CSS
世界上最全面的汽车零部件和配件集合:JC Whitney
2016/09/04 全球购物
数组越界问题
2015/10/21 面试题
民事授权委托书范文
2014/08/02 职场文书
检讨书格式
2015/01/23 职场文书
毕业论文致谢范文
2015/05/14 职场文书
智慧人生:永远不需要向任何人解释你自己
2019/08/20 职场文书
励志语录:你若不勇敢,谁替你坚强
2019/11/08 职场文书
http通过StreamingHttpResponse完成连续的数据传输长链接方式
2022/02/12 Python
Docker安装MySql8并远程访问的实现
2022/07/07 Servers