Python基本数据结构与用法详解【列表、元组、集合、字典】


Posted in Python onMarch 23, 2019

本文实例讲述了Python基本数据结构与用法。分享给大家供大家参考,具体如下:

列表

Python中列表是可变的,这是它区别于字符串和元组的最重要的特点,一句话概括即:列表可以修改,而字符串和元组不能。以下是 Python 中列表的方法:

Python基本数据结构与用法详解【列表、元组、集合、字典】

下面示例演示了列表的大部分方法:

>>> a = [66.25, 333, 333, 1, 1234.5]
>>> print(a.count(333), a.count(66.25), a.count('x'))
2 1 0
>>> a.insert(2, -1)
>>> a.append(333)
>>> a
[66.25, 333, -1, 333, 1, 1234.5, 333]
>>> a.index(333)
1
>>> a.remove(333)
>>> a
[66.25, -1, 333, 1, 1234.5, 333]
>>> a.reverse()
>>> a
[333, 1234.5, 1, 333, -1, 66.25]
>>> a.sort()
>>> a
[-1, 1, 66.25, 333, 333, 1234.5]

注意:类似 insert, remove 或 sort 等修改列表的方法没有返回值。

将列表当做堆栈使用

列表方法使得列表可以很方便的作为一个堆栈来使用,堆栈作为特定的数据结构,最先进入的元素最后一个被释放(后进先出)。用 append() 方法可以把一个元素添加到堆栈顶。用不指定索引的 pop() 方法可以把一个元素从堆栈顶释放出来。例如:

>>> stack = [3, 4, 5]
>>> stack.append(6)
>>> stack.append(7)
>>> stack
[3, 4, 5, 6, 7]
>>> stack.pop()
7
>>> stack [3, 4, 5, 6]
>>> stack.pop()
6
>>> stack.pop()
5
>>> stack
[3, 4]

将列表当作队列使用

也可以把列表当做队列用,只是在队列里第一加入的元素,第一个取出来;但是拿列表用作这样的目的效率不高。在列表的最后添加或者弹出元素速度快,然而在列表里插入或者从头部弹出速度却不快(因为所有其他的元素都得一个一个地移动)。

>>> from collections import deque
>>> queue = deque(["Eric", "John", "Michael"])
>>> queue.append("Terry")                       # Terry arrives
>>> queue.append("Graham")                    # Graham arrives
>>> queue.popleft()                            # The first to arrive now leaves
'Eric'
>>> queue.popleft()                            # The second to arrive now leaves
'John'
>>> queue                               # Remaining queue in order of arrival
deque(['Michael', 'Terry', 'Graham'])

列表推导式

列表推导式提供了从序列创建列表的简单途径。通常应用程序将一些操作应用于某个序列的每个元素,用其获得的结果作为生成新列表的元素,或者根据确定的判定条件创建子序列。

每个列表推导式都在 for 之后跟一个表达式,然后有零到多个 for 或 if 子句。返回结果是一个根据表达从其后的 for 和 if 上下文环境中生成出来的列表。如果希望表达式推导出一个元组,就必须使用括号。

这里我们将列表中每个数值乘三,获得一个新的列表:

>>> vec = [2, 4, 6]
>>> [3*x for x in vec]
[6, 12, 18]

现在我们玩一点小花样:

>>> [[x, x**2] for x in vec]
[[2, 4], [4, 16], [6, 36]]

这里我们对序列里每一个元素逐个调用某方法:

>>> freshfruit = [' banana', ' loganberry ', 'passion fruit ']
>>> [weapon.strip() for weapon in freshfruit]
['banana', 'loganberry', 'passion fruit']

我们可以用 if 子句作为过滤器:

>>> [3*x for x in vec if x > 3]
[12, 18]
>>> [3*x for x in vec if x < 2]
[]

以下是一些关于循环和其它技巧的演示:

>>> vec1 = [2, 4, 6]
>>> vec2 = [4, 3, -9]
>>> [x*y for x in vec1 for y in vec2]
[8, 6, -18, 16, 12, -36, 24, 18, -54]
>>> [x+y for x in vec1 for y in vec2]
[6, 5, -7, 8, 7, -5, 10, 9, -3]
>>> [vec1[i]*vec2[i] for i in range(len(vec1))]
[8, 12, -54]

列表推导式可以使用复杂表达式或嵌套函数:

>>> [str(round(355/113, i)) for i in range(1, 6)]
['3.1', '3.14', '3.142', '3.1416', '3.14159']

嵌套列表解析

Python的列表还可以嵌套。以下实例展示了3X4的矩阵列表:

>>> matrix = [
... [1, 2, 3, 4],
... [5, 6, 7, 8],
... [9, 10, 11, 12],
... ]

以下实例将3X4的矩阵列表转换为4X3列表:

>>> [[row[i] for row in matrix] for i in range(4)]
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

以下实例也可以使用以下方法来实现:

>>> transposed = []
>>> for i in range(4):
...   transposed.append([row[i] for row in matrix])
...
>>> transposed
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

另外一种实现方法:

>>> transposed = []
>>> for i in range(4):
 ...   # the following 3 lines implement the nested listcomp
...   transposed_row = []
...   for row in matrix: ... transposed_row.append(row[i])
...     transposed.append(transposed_row)
...
>>> transposed
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

del 语句

使用 del 语句可以从一个列表中依索引而不是值来删除一个元素。这与使用 pop() 返回一个值不同。可以用 del 语句从列表中删除一个切割,或清空整个列表(我们以前介绍的方法是给该切割赋一个空列表)。例如:

>>> a = [-1, 1, 66.25, 333, 333, 1234.5]
>>> del a[0]
>>> a
[1, 66.25, 333, 333, 1234.5]
>>> del a[2:4]
>>> a
[1, 66.25, 1234.5]
>>> del a[:]
>>> a
[]

也可以用 del 删除实体变量:

>>> del a

元组和序列

元组由若干逗号分隔的值组成,例如:

>>> t = 12345, 54321, 'hello!'
>>> t[0]
12345
>>> t
(12345, 54321, 'hello!')
>>> # Tuples may be nested:
... u = t, (1, 2, 3, 4, 5)
>>> u
((12345, 54321, 'hello!'), (1, 2, 3, 4, 5))

如你所见,元组在输出时总是有括号的,以便于正确表达嵌套结构。在输入时可能有或没有括号, 不过括号通常是必须的(如果元组是更大的表达式的一部分)。

集合

集合是一个无序不重复元素的集。基本功能包括关系测试和消除重复元素。

可以用大括号({})创建集合。注意:如果要创建一个空集合,你必须用 set() 而不是 {} ;后者创建一个空的字典。

以下是一个简单的演示:

>>> basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'}
>>> print(basket) # show that duplicates have been removed
{'orange', 'banana', 'pear', 'apple'}
>>> 'orange' in basket # fast membership testing
True
>>> 'crabgrass' in basket
False
>>> # Demonstrate set operations on unique letters from two words
...
>>> a = set('abracadabra')
>>> b = set('alacazam')
>>> a            # unique letters in a
{'a', 'r', 'b', 'c', 'd'}
>>> a - b          # letters in a but not in b
{'r', 'd', 'b'}
>>> a | b          # letters in either a or b
{'a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'}
>>> a & b             # letters in both a and b
{'a', 'c'}
>>> a ^ b             # letters in a or b but not both
{'r', 'd', 'b', 'm', 'z', 'l'}
>>> basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'}
>>> print(basket)             # show that duplicates have been removed
{'orange', 'banana', 'pear', 'apple'}
>>> 'orange' in basket # fast membership testing
True
>>> 'crabgrass' in basket
False
>>> # Demonstrate set operations on unique letters from two words
...
>>> a = set('abracadabra')
>>> b = set('alacazam')
>>> a               # unique letters in a
 {'a', 'r', 'b', 'c', 'd'}
>>> a - b                 # letters in a but not in b
{'r', 'd', 'b'}
>>> a | b               # letters in either a or b
{'a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'}
>>> a & b             # letters in both a and b
{'a', 'c'}
>>> a ^ b              # letters in a or b but not both
{'r', 'd', 'b', 'm', 'z', 'l'}

字典

另一个非常有用的 Python 内建数据类型是字典。

序列是以连续的整数为索引,与此不同的是,字典以关键字为索引,关键字可以是任意不可变类型,通常用字符串或数值。

理解字典的最佳方式是把它看做无序的键=>值对集合。在同一个字典之内,关键字必须是互不相同。

一对大括号创建一个空的字典:{}

这是一个字典运用的简单例子:

>>> tel = {'jack': 4098, 'sape': 4139}
>>> tel['guido'] = 4127
>>> tel
{'sape': 4139, 'guido': 4127, 'jack': 4098}
>>> tel['jack']
4098
>>> del tel['sape']
>>> tel['irv'] = 4127
>>> tel
{'guido': 4127, 'irv': 4127, 'jack': 4098}
>>> list(tel.keys())
['irv', 'guido', 'jack']
>>> sorted(tel.keys())
 ['guido', 'irv', 'jack']
>>> 'guido' in tel
True
>>> 'jack' not in tel
False

构造函数 dict() 直接从键值对元组列表中构建字典。如果有固定的模式,列表推导式指定特定的键值对:

>>> dict([('sape', 4139), ('guido', 4127), ('jack', 4098)])
{'sape': 4139, 'jack': 4098, 'guido': 4127}

此外,字典推导可以用来创建任意键和值的表达式词典:

>>> {x: x**2 for x in (2, 4, 6)}
{2: 4, 4: 16, 6: 36}

如果关键字只是简单的字符串,使用关键字参数指定键值对有时候更方便:

>>> dict(sape=4139, guido=4127, jack=4098)
{'sape': 4139, 'jack': 4098, 'guido': 4127}

遍历技巧

在字典中遍历时,关键字和对应的值可以使用 items() 方法同时解读出来:

>>> knights = {'gallahad': 'the pure', 'robin': 'the brave'}
>>> for k, v in knights.items():
...   print(k, v)
...
gallahad the pure
robin the brave

在序列中遍历时,索引位置和对应值可以使用 enumerate() 函数同时得到:

>>> for i, v in enumerate(['tic', 'tac', 'toe']):
...   print(i, v)
...
0 tic
1 tac
2 toe

同时遍历两个或更多的序列,可以使用 zip() 组合:

>>> questions = ['name', 'quest', 'favorite color']
>>> answers = ['lancelot', 'the holy grail', 'blue']
>>> for q, a in zip(questions, answers):
...   print('What is your {0}? It is {1}.'.format(q, a))
...
What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.

要反向遍历一个序列,首先指定这个序列,然后调用 reversesd() 函数:

>>> for i in reversed(range(1, 10, 2)):
... print(i)
...
9
7
5
3
1

要按顺序遍历一个序列,使用 sorted() 函数返回一个已排序的序列,并不修改原值:

>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
>>> for f in sorted(set(basket)):
...   print(f)
...
apple
banana
orange
pear

希望本文所述对大家Python程序设计有所帮助。

Python 相关文章推荐
Python中的if、else、elif语句用法简明讲解
Mar 11 Python
json跨域调用python的方法详解
Jan 11 Python
关于python的list相关知识(推荐)
Aug 30 Python
python中判断文件编码的chardet(实例讲解)
Dec 21 Python
Python读取Word(.docx)正文信息的方法
Mar 15 Python
Django migrations 默认目录修改的方法教程
Sep 28 Python
Django模板导入母版继承和自定义返回Html片段过程解析
Sep 18 Python
python通过实例讲解反射机制
Oct 17 Python
用python3读取python2的pickle数据方式
Dec 25 Python
解决tensorflow 释放图,删除变量问题
Jun 23 Python
3分钟看懂Python后端必须知道的Django的信号机制
Jul 26 Python
python 如何将两个实数矩阵合并为一个复数矩阵
May 19 Python
Django异步任务之Celery的基本使用
Mar 23 #Python
深入解析Python小白学习【操作列表】
Mar 23 #Python
Python基础之条件控制操作示例【if语句】
Mar 23 #Python
Python基础之循环语句用法示例【for、while循环】
Mar 23 #Python
详解python中sort排序使用
Mar 23 #Python
Python基础之函数的定义与使用示例
Mar 23 #Python
详解用Python练习画个美队盾牌
Mar 23 #Python
You might like
分页显示Oracle数据库记录的类之一
2006/10/09 PHP
PHP产生随机字符串函数
2006/12/06 PHP
php中通过虚代理实现延迟加载的实现代码
2011/06/10 PHP
PHP调用Webservice实例代码
2011/07/29 PHP
php创建基本身份认证站点的方法详解
2013/06/08 PHP
Thinkphp 框架基础之源码获取、环境要求与目录结构分析
2020/04/27 PHP
function, new function, new Function之间的区别
2007/03/08 Javascript
网站导致浏览器崩溃的原因总结(多款浏览器) 推荐
2010/04/15 Javascript
jQuery学习笔记 操作jQuery对象 CSS处理
2012/09/19 Javascript
jQuery动态设置form表单的enctype值(实现代码)
2013/07/04 Javascript
js对象继承之原型链继承实例
2015/01/10 Javascript
JavaScript实现向右伸出的多级网页菜单效果
2015/08/25 Javascript
基于jQuery实现仿51job城市选择功能实例代码
2016/03/02 Javascript
深入学习JavaScript的AngularJS框架中指令的使用方法
2016/03/05 Javascript
原生JavaScript制作计算器
2016/10/16 Javascript
详解从Vue.js源码看异步更新DOM策略及nextTick
2017/10/11 Javascript
微信小程序实现美团菜单
2018/06/06 Javascript
小程序清理本地缓存的方法
2018/08/17 Javascript
微信小程序使用websocket通讯的demo,含前后端代码,亲测可用
2019/05/22 Javascript
javascript实现函数柯里化与反柯里化过程解析
2019/10/08 Javascript
小程序中的箭头函数的具体使用
2020/06/19 Javascript
[03:02]2014DOTA2西雅图邀请赛 让队员自己告诉你DK NAVI备战情况
2014/07/08 DOTA
[04:09]2018年度DOTA2社区贡献奖-完美盛典
2018/12/16 DOTA
[07:25]DOTA2-DPC中国联赛2月5日Recap集锦
2021/03/11 DOTA
Python实现的简单发送邮件脚本分享
2014/11/07 Python
Python读写文件方法总结
2015/06/09 Python
python条件变量之生产者与消费者操作实例分析
2017/03/22 Python
Python实现读写sqlite3数据库并将统计数据写入Excel的方法示例
2017/08/07 Python
python+selenium实现登录账户后自动点击的示例
2017/12/22 Python
芬兰灯具网上商店:Nettilamppu.fi
2018/06/30 全球购物
说出一些常用的类,包,接口
2014/09/22 面试题
商务日语毕业生自荐信
2013/11/23 职场文书
幼儿教师研修感言
2014/02/12 职场文书
中学校庆方案
2014/03/17 职场文书
家长高考寄语
2015/02/27 职场文书
Redis模仿手机验证码发送的实现示例
2021/11/02 Redis