Python DataFrame.groupby()聚合函数,分组级运算


Posted in Python onSeptember 18, 2018

pandas提供了一个灵活高效的groupby功能,它使你能以一种自然的方式对数据集进行切片、切块、摘要等操作。根据一个或多个键(可以是函数、数组或DataFrame列名)拆分pandas对象。计算分组摘要统计,如计数、平均值、标准差,或用户自定义函数。对DataFrame的列应用各种各样的函数。应用组内转换或其他运算,如规格化、线性回归、排名或选取子集等。计算透视表或交叉表。执行分位数分析以及其他分组分析。

groupby分组函数:

返回值:返回重构格式的DataFrame,特别注意,groupby里面的字段内的数据重构后都会变成索引

groupby(),一般和sum()、mean()一起使用,如下例:

先自定义生成数组

import pandas as pd
df = pd.DataFrame({'key1':list('ababa'),
  'key2': ['one','two','one','two','one'],
  'data1': np.random.randn(5),
  'data2': np.random.randn(5)})
print(df)

 data1 data2 key1 key2
0 -1.313101 -0.453361 a one
1 0.791463 1.096693 b two
2 0.462611 1.150597 a one
3 -0.216121 1.381333 b two
4 0.077367 -0.282876 a one

应用groupby,分组键均为Series(譬如df[‘xx']),实际上分组键可以是任何长度适当的数组

#将df['data1']按照分组键为df['key1']进行分组
grouped=df['data1'].groupby(df['key1'])
print(grouped.mean())
key1
a -0.257707
b 0.287671
Name: data1, dtype: float64
states=np.array(['Ohio','California','California','Ohio','Ohio'])
years=np.array([2005,2005,2006,2005,2006])
#states第一层索引,years第二层分层索引
print(df['data1'].groupby([states,years]).mean())
California 2005 0.791463
 2006 0.462611
Ohio 2005 -0.764611
 2006 0.077367
Name: data1, dtype: float64
#df根据‘key1'分组,然后对df剩余数值型的数据运算
df.groupby('key1').mean()
 data1 data2
key1  
a -0.257707 0.138120
b 0.287671 1.239013
#可以看出没有key2列,因为df[‘key2']不是数值数据,所以被从结果中移除。默认情况下,所有数值列都会被聚合,虽然有时可能被过滤为一个子集。

对分组进行迭代

#name就是groupby中的key1的值,group就是要输出的内容
for name, group in df.groupby('key1'):
 print (name,group)
a data1 data2 key1 key2
0 -1.313101 -0.453361 a one
2 0.462611 1.150597 a one
4 0.077367 -0.282876 a one
b data1 data2 key1 key2
1 0.791463 1.096693 b two
3 -0.216121 1.381333 b two

对group by后的内容进行操作,可转换成字典

#转化为字典
piece=dict(list(df.groupby('key1')))
{'a': data1 data2 key1 key2
 0 -1.313101 -0.453361 a one
 2 0.462611 1.150597 a one
 4 0.077367 -0.282876 a one, 'b': data1 data2 key1 key2
 1 0.791463 1.096693 b two
 3 -0.216121 1.381333 b two}
#对字典取值
value = piece['a']

groupby默认是在axis=0上进行分组的,通过设置也可以在其他任何轴上进行分组

grouped=df.groupby(df.dtypes, axis=1)
value = dict(list(grouped))
print(value)
{dtype('float64'): data1 data2
0 -1.313101 -0.453361
1 0.791463 1.096693
2 0.462611 1.150597
3 -0.216121 1.381333
4 0.077367 -0.282876, dtype('O'): key1 key2
0 a one
1 b two
2 a one
3 b two
4 a one}

对于大数据,很多情况是只需要对部分列进行聚合

#对df进行'key1','key2'的两次分组,然后取data2的数据,对两次细分的分组数据取均值
value = df.groupby(['key1','key2'])[['data2']].mean()
 data2
key1 key2 
a one 0.138120
b two 1.239013
----------------------------------
df
Out[1]: 
 data1 data2 key1 key2
0 -1.313101 -0.453361 a one
1 0.791463 1.096693 b two
2 0.462611 1.150597 a one
3 -0.216121 1.381333 b two
4 0.077367 -0.282876 a one
----------------------------------
df['key2'].iloc[-1] ='two'
value = df.groupby(['key1','key2'])[['data2']].mean()
value
Out[2]: 
 data2
key1 key2 
a one 0.348618
 two -0.282876
b two 1.239013

Python中的分组函数(groupby、itertools)

from operator import itemgetter #itemgetter用来去dict中的key,省去了使用lambda函数
from itertools import groupby #itertool还包含有其他很多函数,比如将多个list联合起来。。
d1={'name':'zhangsan','age':20,'country':'China'}
d2={'name':'wangwu','age':19,'country':'USA'}
d3={'name':'lisi','age':22,'country':'JP'}
d4={'name':'zhaoliu','age':22,'country':'USA'}
d5={'name':'pengqi','age':22,'country':'USA'}
d6={'name':'lijiu','age':22,'country':'China'}
lst=[d1,d2,d3,d4,d5,d6]
#通过country进行分组:
lst.sort(key=itemgetter('country')) #需要先排序,然后才能groupby。lst排序后自身被改变
lstg = groupby(lst,itemgetter('country')) 
#lstg = groupby(lst,key=lambda x:x['country']) 等同于使用itemgetter()
for key,group in lstg:
 for g in group: #group是一个迭代器,包含了所有的分组列表
 print key,g
返回:
China {'country': 'China', 'age': 20, 'name': 'zhangsan'}
China {'country': 'China', 'age': 22, 'name': 'lijiu'}
JP {'country': 'JP', 'age': 22, 'name': 'lisi'}
USA {'country': 'USA', 'age': 19, 'name': 'wangwu'}
USA {'country': 'USA', 'age': 22, 'name': 'zhaoliu'}
USA {'country': 'USA', 'age': 22, 'name': 'pengqi'}
print [key for key,group in lstg] #返回:['China', 'JP', 'USA']
print [(key,list(group)) for key,group in lstg]
#返回的list中包含着三个元组:
[('China', [{'country': 'China', 'age': 20, 'name': 'zhangsan'}, {'country': 'China', 'age': 22, 'name': 'lijiu'}]), ('JP', [{'country': 'JP', 'age': 22, 'name': 'lisi'}]), ('USA', [{'country': 'USA', 'age': 19, 'name': 'wangwu'}, {'country': 'USA', 'age': 22, 'name': 'zhaoliu'}, {'country': 'USA', 'age': 22, 'name': 'pengqi'}])]
print dict([(key,list(group)) for key,group in lstg])
#返回的是一个字典:
{'JP': [{'country': 'JP', 'age': 22, 'name': 'lisi'}], 'China': [{'country': 'China', 'age': 20, 'name': 'zhangsan'}, {'country': 'China', 'age': 22, 'name': 'lijiu'}], 'USA': [{'country': 'USA', 'age': 19, 'name': 'wangwu'}, {'country': 'USA', 'age': 22, 'name': 'zhaoliu'}, {'country': 'USA', 'age': 22, 'name': 'pengqi'}]}
print dict([(key,len(list(group))) for key,group in lstg])
#返回每个分组的个数:
{'JP': 1, 'China': 2, 'USA': 3}
#返回包含有2个以上元素的分组
print [key for key,group in groupby(sorted(lst,key=itemgetter('country')),itemgetter('country')) if len(list(group))>=2]
#返回:['China', 'USA']
 
lstg = groupby(sorted(lst,key=itemgetter('country')),key=itemgetter('country')) 
lstgall=[(key,list(group)) for key,group in lstg ]
print dict(filter(lambda x:len(x[1])>2,lstgall)) 
#过滤出分组后的元素个数大于2个的分组,返回:
{'USA': [{'country': 'USA', 'age': 19, 'name': 'wangwu'}, {'country': 'USA', 'age': 22, 'name': 'zhaoliu'}, {'country': 'USA', 'age': 22, 'name': 'pengqi'}]}

自定义分组:

from itertools import groupby
lst=[2,8,11,25,43,6,9,29,51,66]

def gb(num):
 if num <= 10:
 return 'less'
 elif num >=30:
 return 'great'
 else:
 return 'middle'
print [(k,list(g))for k,g in groupby(sorted(lst),key=gb)]
返回:
[('less', [2, 6, 8, 9]), ('middle', [11, 25, 29]), ('great', [43, 51, 66])]

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对三水点靠木的支持。如果你想了解更多相关内容请查看下面相关链接

Python 相关文章推荐
python字符串连接的N种方式总结
Sep 17 Python
举例讲解Python设计模式编程中的访问者与观察者模式
Jan 26 Python
利用Python如何生成随机密码
Apr 20 Python
python3.5 + PyQt5 +Eric6 实现的一个计算器代码
Mar 11 Python
用TensorFlow实现戴明回归算法的示例
May 02 Python
pandas将numpy数组写入到csv的实例
Jul 04 Python
Numpy截取指定范围内的数据方法
Nov 14 Python
Python实现字符型图片验证码识别完整过程详解
May 10 Python
python 使用matplotlib 实现从文件中读取x,y坐标的可视化方法
Jul 04 Python
python通过移动端访问查看电脑界面
Jan 06 Python
Python使用循环神经网络解决文本分类问题的方法详解
Jan 16 Python
Django中ORM的基本使用教程
Dec 22 Python
python 3.6.2 安装配置方法图文教程
Sep 18 #Python
Python对CSV、Excel、txt、dat文件的处理
Sep 18 #Python
python 3.6.4 安装配置方法图文教程
Sep 18 #Python
python 3.6.5 安装配置方法图文教程
Sep 18 #Python
python的pip安装以及使用教程
Sep 18 #Python
windows下python安装小白入门教程
Sep 18 #Python
使用Python如何测试InnoDB与MyISAM的读写性能
Sep 18 #Python
You might like
咖啡的种类和口感
2021/03/03 新手入门
php简单的留言板与回复功能具体实现
2014/02/19 PHP
PHP实现的限制IP投票程序IP来源分析
2016/05/04 PHP
PHP中CheckBox多选框上传失败的代码写法
2017/02/13 PHP
prototype class详解
2006/09/07 Javascript
javascript sudoku 数独智力游戏生成代码
2010/03/27 Javascript
3款实用的在线JS代码工具(国外)
2012/03/15 Javascript
javascript dom追加内容实现示例
2013/09/21 Javascript
jquery中的ajax方法怎样通过JSONP进行远程调用
2014/05/04 Javascript
js控制文本框只输入数字和小数点的方法
2015/03/10 Javascript
javascript获取当前的时间戳的方法汇总
2015/07/26 Javascript
Jquery组件easyUi实现手风琴(折叠面板)示例
2016/08/23 Javascript
干货!教大家如何选择Vue和React
2017/03/13 Javascript
VUE长按事件需求详解
2017/10/18 Javascript
vue.js获得当前元素的文字信息方法
2018/03/09 Javascript
jQuery实现图片下载代码
2019/07/18 jQuery
vue中使用v-model完成组件间的通信
2019/08/22 Javascript
jQuery--遍历操作实例小结【后代、同胞及过滤】
2020/05/22 jQuery
python中执行shell命令的几个方法小结
2014/09/18 Python
pymssql数据库操作MSSQL2005实例分析
2015/05/25 Python
Python控制多进程与多线程并发数总结
2016/10/26 Python
opencv转换颜色空间更改图片背景
2019/08/20 Python
django列表筛选功能的实现代码
2020/03/27 Python
使用PyQt5实现图片查看器的示例代码
2020/04/21 Python
Eclipse配置python默认头过程图解
2020/04/26 Python
Nginx+Uwsgi+Django 项目部署到服务器的思路详解
2020/05/08 Python
Python3爬虫里关于代理的设置总结
2020/07/30 Python
HTML5 canvas画矩形时出现边框样式不一致的解决方法
2013/10/14 HTML / CSS
如何通过jdbc调用存储过程
2012/04/19 面试题
人事任命书怎么写
2014/06/05 职场文书
2014年巴西世界杯口号
2014/06/05 职场文书
房地产营销活动策划方案
2014/09/15 职场文书
机关副主任个人四风问题整改措施
2014/09/26 职场文书
公司副总经理岗位职责
2015/04/08 职场文书
jdbc使用PreparedStatement批量插入数据的方法
2021/04/27 MySQL
HTML 里 img 元素的 src 和 srcset 属性的区别详解
2023/05/21 HTML / CSS