python实现隐马尔科夫模型HMM


Posted in Python onMarch 25, 2018

一份完全按照李航<<统计学习方法>>介绍的HMM代码,供大家参考,具体内容如下

#coding=utf8 
''''' 
Created on 2017-8-5 
里面的代码许多地方可以精简,但为了百分百还原公式,就没有精简了。 
@author: adzhua 
''' 
 
import numpy as np 
 
class HMM(object): 
  def __init__(self, A, B, pi): 
    ''''' 
    A: 状态转移概率矩阵 
    B: 输出观察概率矩阵 
    pi: 初始化状态向量 
    ''' 
    self.A = np.array(A) 
    self.B = np.array(B) 
    self.pi = np.array(pi) 
    self.N = self.A.shape[0]  # 总共状态个数 
    self.M = self.B.shape[1]  # 总共观察值个数   
    
   
  # 输出HMM的参数信息 
  def printHMM(self): 
    print ("==================================================") 
    print ("HMM content: N =",self.N,",M =",self.M) 
    for i in range(self.N): 
      if i==0: 
        print ("hmm.A ",self.A[i,:]," hmm.B ",self.B[i,:]) 
      else: 
        print ("   ",self.A[i,:],"    ",self.B[i,:]) 
    print ("hmm.pi",self.pi) 
    print ("==================================================") 
           
   
  # 前向算法  
  def forwar(self, T, O, alpha, prob): 
    ''''' 
    T: 观察序列的长度 
    O: 观察序列 
    alpha: 运算中用到的临时数组 
    prob: 返回值所要求的概率 
    '''   
     
    # 初始化 
    for i in range(self.N): 
      alpha[0, i] = self.pi[i] * self.B[i, O[0]] 
 
    # 递归 
    for t in range(T-1): 
      for j in range(self.N): 
        sum = 0.0 
        for i in range(self.N): 
          sum += alpha[t, i] * self.A[i, j] 
        alpha[t+1, j] = sum * self.B[j, O[t+1]]     
     
    # 终止 
    sum = 0.0 
    for i in range(self.N): 
      sum += alpha[T-1, i] 
     
    prob[0] *= sum   
 
   
  # 带修正的前向算法 
  def forwardWithScale(self, T, O, alpha, scale, prob): 
    scale[0] = 0.0 
     
    # 初始化 
    for i in range(self.N): 
      alpha[0, i] = self.pi[i] * self.B[i, O[0]] 
      scale[0] += alpha[0, i] 
       
    for i in range(self.N): 
      alpha[0, i] /= scale[0] 
     
    # 递归 
    for t in range(T-1): 
      scale[t+1] = 0.0 
      for j in range(self.N): 
        sum = 0.0 
        for i in range(self.N): 
          sum += alpha[t, i] * self.A[i, j] 
         
        alpha[t+1, j] = sum * self.B[j, O[t+1]] 
        scale[t+1] += alpha[t+1, j] 
       
      for j in range(self.N): 
        alpha[t+1, j] /= scale[t+1] 
      
    # 终止 
    for t in range(T): 
      prob[0] += np.log(scale[t])     
       
       
  def back(self, T, O, beta, prob):  
    ''''' 
    T: 观察序列的长度  len(O) 
    O: 观察序列 
    beta: 计算时用到的临时数组 
    prob: 返回值;所要求的概率 
    '''  
     
    # 初始化         
    for i in range(self.N): 
      beta[T-1, i] = 1.0 
     
    # 递归 
    for t in range(T-2, -1, -1): # 从T-2开始递减;即T-2, T-3, T-4, ..., 0 
      for i in range(self.N): 
        sum = 0.0 
        for j in range(self.N): 
          sum += self.A[i, j] * self.B[j, O[t+1]] * beta[t+1, j] 
         
        beta[t, i] = sum 
     
    # 终止 
    sum = 0.0 
    for i in range(self.N): 
      sum += self.pi[i]*self.B[i,O[0]]*beta[0,i] 
     
    prob[0] = sum   
     
     
  # 带修正的后向算法 
  def backwardWithScale(self, T, O, beta, scale): 
    ''''' 
    T: 观察序列的长度 len(O) 
    O: 观察序列 
    beta: 计算时用到的临时数组 
    ''' 
    # 初始化 
    for i in range(self.N): 
      beta[T-1, i] = 1.0 
     
    # 递归         
    for t in range(T-2, -1, -1): 
      for i in range(self.N): 
        sum = 0.0 
        for j in range(self.N): 
          sum += self.A[i, j] * self.B[j, O[t+1]] * beta[t+1, j] 
         
        beta[t, i] = sum / scale[t+1]     
         
   
  # viterbi算法       
  def viterbi(self, O): 
    ''''' 
    O: 观察序列 
    ''' 
    T = len(O) 
    # 初始化 
    delta = np.zeros((T, self.N), np.float) 
    phi = np.zeros((T, self.N), np.float) 
    I = np.zeros(T) 
     
    for i in range(self.N): 
      delta[0, i] = self.pi[i] * self.B[i, O[0]] 
      phi[0, i] = 0.0 
     
    # 递归 
    for t in range(1, T): 
      for i in range(self.N): 
        delta[t, i] = self.B[i, O[t]] * np.array([delta[t-1, j] * self.A[j, i] for j in range(self.N)] ).max() 
        phi = np.array([delta[t-1, j] * self.A[j, i] for j in range(self.N)]).argmax() 
       
    # 终止 
    prob = delta[T-1, :].max() 
    I[T-1] = delta[T-1, :].argmax() 
     
    for t in range(T-2, -1, -1): 
      I[t] = phi[I[t+1]] 
       
     
    return prob, I 
   
   
  # 计算gamma(计算A所需的分母;详情见李航的统计学习) : 时刻t时马尔可夫链处于状态Si的概率 
  def computeGamma(self, T, alpha, beta, gamma): 
    '''''''' 
    for t in range(T): 
      for i in range(self.N): 
        sum = 0.0 
        for j in range(self.N): 
          sum += alpha[t, j] * beta[t, j] 
         
        gamma[t, i] = (alpha[t, i] * beta[t, i]) / sum   
   
  # 计算sai(i,j)(计算A所需的分子) 为给定训练序列O和模型lambda时 
  def computeXi(self, T, O, alpha, beta, Xi): 
     
    for t in range(T-1): 
      sum = 0.0 
      for i in range(self.N): 
        for j in range(self.N): 
          Xi[t, i, j] = alpha[t, i] * self.A[i, j] * self.B[j, O[t+1]] * beta[t+1, j] 
          sum += Xi[t, i, j] 
       
      for i in range(self.N): 
        for j in range(self.N): 
          Xi[t, i, j] /= sum 
   
   
  # 输入 L个观察序列O,初始模型:HMM={A,B,pi,N,M} 
  def BaumWelch(self, L, T, O, alpha, beta, gamma):                   
    DELTA = 0.01 ; round = 0 ; flag = 1 ; probf = [0.0] 
    delta = 0.0; probprev = 0.0 ; ratio = 0.0 ; deltaprev = 10e-70 
     
    xi = np.zeros((T, self.N, self.N)) # 计算A的分子 
    pi = np.zeros((T), np.float)  # 状态初始化概率 
     
    denominatorA = np.zeros((self.N), np.float) # 辅助计算A的分母的变量 
    denominatorB = np.zeros((self.N), np.float) 
    numeratorA = np.zeros((self.N, self.N), np.float)  # 辅助计算A的分子的变量 
    numeratorB = np.zeros((self.N, self.M), np.float)  # 针对输出观察概率矩阵 
    scale = np.zeros((T), np.float) 
     
    while True: 
      probf[0] =0 
       
      # E_step 
      for l in range(L): 
        self.forwardWithScale(T, O[l], alpha, scale, probf) 
        self.backwardWithScale(T, O[l], beta, scale) 
        self.computeGamma(T, alpha, beta, gamma)  # (t, i) 
        self.computeXi(T, O[l], alpha, beta, xi)  #(t, i, j) 
         
        for i in range(self.N): 
          pi[i] += gamma[0, i] 
          for t in range(T-1): 
            denominatorA[i] += gamma[t, i] 
            denominatorB[i] += gamma[t, i] 
          denominatorB[i] += gamma[T-1, i] 
         
          for j in range(self.N): 
            for t in range(T-1): 
              numeratorA[i, j] += xi[t, i, j] 
             
          for k in range(self.M): # M为观察状态取值个数 
            for t in range(T): 
              if O[l][t] == k: 
                numeratorB[i, k] += gamma[t, i]   
                 
       
      # M_step。 计算pi, A, B 
      for i in range(self.N): # 这个for循环也可以放到for l in range(L)里面 
        self.pi[i] = 0.001 / self.N + 0.999 * pi[i] / L 
         
        for j in range(self.N): 
          self.A[i, j] = 0.001 / self.N + 0.999 * numeratorA[i, j] / denominatorA[i]           
          numeratorA[i, j] = 0.0 
         
        for k in range(self.M): 
          self.B[i, k] = 0.001 / self.N + 0.999 * numeratorB[i, k] / denominatorB[i] 
          numeratorB[i, k] = 0.0   
         
        #重置 
        pi[i] = denominatorA[i] = denominatorB[i] = 0.0 
         
      if flag == 1: 
        flag = 0 
        probprev = probf[0] 
        ratio = 1 
        continue 
       
      delta = probf[0] - probprev  
      ratio = delta / deltaprev   
      probprev = probf[0] 
      deltaprev = delta 
      round += 1 
       
      if ratio <= DELTA : 
        print('num iteration: ', round)   
        break 
     
 
if __name__ == '__main__': 
  print ("python my HMM") 
   
  # 初始的状态概率矩阵pi;状态转移矩阵A;输出观察概率矩阵B; 观察序列 
  pi = [0.5,0.5] 
  A = [[0.8125,0.1875],[0.2,0.8]] 
  B = [[0.875,0.125],[0.25,0.75]] 
  O = [ 
     [1,0,0,1,1,0,0,0,0], 
     [1,1,0,1,0,0,1,1,0], 
     [0,0,1,1,0,0,1,1,1] 
    ] 
  L = len(O) 
  T = len(O[0])  # T等于最长序列的长度就好了 
   
  hmm = HMM(A, B, pi) 
  alpha = np.zeros((T,hmm.N),np.float) 
  beta = np.zeros((T,hmm.N),np.float) 
  gamma = np.zeros((T,hmm.N),np.float) 
   
  # 训练 
  hmm.BaumWelch(L,T,O,alpha,beta,gamma) 
   
  # 输出HMM参数信息 
  hmm.printHMM()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python回调函数的使用方法
Jan 23 Python
9种python web 程序的部署方式小结
Jun 30 Python
利用Python开发微信支付的注意事项
Aug 19 Python
python基础练习之几个简单的游戏
Nov 10 Python
使用python对文件中的单词进行提取的方法示例
Dec 21 Python
python广度优先搜索得到两点间最短路径
Jan 17 Python
python hough变换检测直线的实现方法
Jul 12 Python
python中类的输出或类的实例输出为这种形式的原因
Aug 12 Python
python 检查数据中是否有缺失值,删除缺失值的方式
Dec 02 Python
Python编程快速上手——疯狂填词程序实现方法分析
Feb 29 Python
python线程池如何使用
May 28 Python
python如何爬取动态网站
Sep 09 Python
Python实现的寻找前5个默尼森数算法示例
Mar 25 #Python
Python实现修改文件内容的方法分析
Mar 25 #Python
利用python为运维人员写一个监控脚本
Mar 25 #Python
python实现数据写入excel表格
Mar 25 #Python
使用requests库制作Python爬虫
Mar 25 #Python
利用Python代码实现数据可视化的5种方法详解
Mar 25 #Python
Python cookbook(数据结构与算法)同时对数据做转换和换算处理操作示例
Mar 23 #Python
You might like
PHP4实际应用经验篇(4)
2006/10/09 PHP
php计算两个日期时间差(返回年、月、日)
2014/06/19 PHP
标准版Eclipse搭建PHP环境的详细步骤
2015/11/18 PHP
PHP基于GD库实现的生成图片缩略图函数示例
2017/07/05 PHP
解决使用attachEvent函数时,this指向被绑定的元素的问题的方法
2007/08/13 Javascript
修改好的jquery滚动字幕效果实现代码
2011/06/22 Javascript
jquery获取特定name所有选中的checkbox,支持IE9标准模式
2013/03/18 Javascript
jQuery根据纬度经度查看地图处理程序
2013/05/08 Javascript
浅析Node.js实现HTTP文件下载
2016/08/05 Javascript
用瀑布流的方式在网页上插入图片的简单实现方法
2016/09/23 Javascript
JavaScript中cookie工具函数封装的示例代码
2016/10/11 Javascript
基于jQuery实现文字打印动态效果
2017/04/21 jQuery
30分钟精通React今年最劲爆的新特性——React Hooks
2019/03/11 Javascript
JS实现马赛克图片效果完整示例
2019/04/13 Javascript
JS监听组合按键思路及实现过程
2020/04/17 Javascript
JS事件循环机制event loop宏任务微任务原理解析
2020/08/04 Javascript
windows10下python3.5 pip3安装图文教程
2018/04/02 Python
Python异常的检测和处理方法
2018/10/26 Python
在python中只选取列表中某一纵列的方法
2018/11/28 Python
关于Python 的简单栅格图像边界提取方法
2019/07/05 Python
python打开使用的方法
2019/09/30 Python
Python warning警告出现的原因及忽略方法
2020/01/31 Python
Python+Opencv实现把图片、视频互转的示例
2020/12/17 Python
python绕过图片滑动验证码实现爬取PTA所有题目功能 附源码
2021/01/06 Python
HTML5 CSS3给网站设计带来出色效果
2009/07/16 HTML / CSS
CSS3自定义滚动条样式的示例代码
2017/08/21 HTML / CSS
魅力惠奢品线上平台:MEI.COM
2016/11/29 全球购物
Foot Locker澳洲官网:美国运动服和鞋类零售商
2019/10/11 全球购物
入团者的自我评价分享
2013/12/02 职场文书
咖啡店的创业计划书,让你hold不住
2014/01/03 职场文书
大学校务公开实施方案
2014/03/31 职场文书
水污染治理工程专业自荐信
2014/06/21 职场文书
社团活动总结模板
2014/06/30 职场文书
社区党建工作汇报材料
2014/08/14 职场文书
党员反四风学习心得体会
2016/01/22 职场文书
Java后端 Dubbo retries 超时重试机制的解决方案
2022/04/14 Java/Android