Python实现的随机森林算法与简单总结


Posted in Python onJanuary 30, 2018

本文实例讲述了Python实现的随机森林算法。分享给大家供大家参考,具体如下:

随机森林是数据挖掘中非常常用的分类预测算法,以分类或回归的决策树为基分类器。算法的一些基本要点:

*对大小为m的数据集进行样本量同样为m的有放回抽样;
*对K个特征进行随机抽样,形成特征的子集,样本量的确定方法可以有平方根、自然对数等;
*每棵树完全生成,不进行剪枝;
*每个样本的预测结果由每棵树的预测投票生成(回归的时候,即各棵树的叶节点的平均)

著名的python机器学习包scikit learn的文档对此算法有比较详尽的介绍: http://scikit-learn.org/stable/modules/ensemble.html#random-forests

出于个人研究和测试的目的,基于经典的Kaggle 101泰坦尼克号乘客的数据集,建立模型并进行评估。比赛页面及相关数据集的下载:https://www.kaggle.com/c/titanic

泰坦尼克号的沉没,是历史上非常著名的海难。突然感到,自己面对的不再是冷冰冰的数据,而是用数据挖掘的方法,去研究具体的历史问题,也是饶有兴趣。言归正传,模型的主要的目标,是希望根据每个乘客的一系列特征,如性别、年龄、舱位、上船地点等,对其是否能生还进行预测,是非常典型的二分类预测问题。数据集的字段名及实例如下:

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
1 0 3 Braund, Mr. Owen Harris male 22 1 0 A/5 21171 7.25 S
2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Thayer) female 38 1 0 PC 17599 71.2833 C85 C
3 1 3 Heikkinen, Miss. Laina female 26 0 0 STON/O2. 3101282 7.925 S
4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35 1 0 113803 53.1 C123 S
5 0 3 Allen, Mr. William Henry male 35 0 0 373450 8.05 S

值得说明的是,SibSp是指sister brother spouse,即某个乘客随行的兄弟姐妹、丈夫、妻子的人数,Parch指parents,children

下面给出整个数据处理及建模过程,基于ubuntu+python 3.4( anaconda科学计算环境已经集成一系列常用包,pandas numpy sklearn等,这里强烈推荐)

懒得切换输入法,写的时候主要的注释都是英文,中文的注释是后来补充的:-)

# -*- coding: utf-8 -*-
"""
@author: kim
"""
from model import *#载入基分类器的代码
#ETL:same procedure to training set and test set
training=pd.read_csv('train.csv',index_col=0)
test=pd.read_csv('test.csv',index_col=0)
SexCode=pd.DataFrame([1,0],index=['female','male'],columns=['Sexcode']) #将性别转化为01
training=training.join(SexCode,how='left',on=training.Sex)
training=training.drop(['Name','Ticket','Embarked','Cabin','Sex'],axis=1)#删去几个不参与建模的变量,包括姓名、船票号,船舱号
test=test.join(SexCode,how='left',on=test.Sex)
test=test.drop(['Name','Ticket','Embarked','Cabin','Sex'],axis=1)
print('ETL IS DONE!')
#MODEL FITTING
#===============PARAMETER AJUSTMENT============
min_leaf=1
min_dec_gini=0.0001
n_trees=5
n_fea=int(math.sqrt(len(training.columns)-1))
#==============================================
'''''
BEST SCORE:0.83
min_leaf=30
min_dec_gini=0.001
n_trees=20
'''
#ESSEMBLE BY RANDOM FOREST
FOREST={}
tmp=list(training.columns)
tmp.pop(tmp.index('Survived'))
feaList=pd.Series(tmp)
for t in range(n_trees):
#  fea=[]
  feasample=feaList.sample(n=n_fea,replace=False)#select feature
  fea=feasample.tolist()
  fea.append('Survived')
#    feaNew=fea.append(target)
  subset=training.sample(n=len(training),replace=True)#generate the dataset with replacement
  subset=subset[fea]
#  print(str(t)+' Classifier built on feature:')
#  print(list(fea))
  FOREST[t]=tree_grow(subset,'Survived',min_leaf,min_dec_gini) #save the tree
#MODEL PREDICTION
#======================
currentdata=training
output='submission_rf_20151116_30_0.001_20'
#======================
prediction={}
for r in currentdata.index:#a row
  prediction_vote={1:0,0:0}
  row=currentdata.get(currentdata.index==r)
  for n in range(n_trees):
    tree_dict=FOREST[n] #a tree
    p=model_prediction(tree_dict,row)
    prediction_vote[p]+=1
  vote=pd.Series(prediction_vote)
  prediction[r]=list(vote.order(ascending=False).index)[0]#the vote result
result=pd.Series(prediction,name='Survived_p')
#del prediction_vote
#del prediction
#result.to_csv(output)
t=training.join(result,how='left')
accuracy=round(len(t[t['Survived']==t['Survived_p']])/len(t),5)
print(accuracy)

上述是随机森林的代码,如上所述,随机森林是一系列决策树的组合,决策树每次分裂,用Gini系数衡量当前节点的“不纯净度”,如果按照某个特征的某个分裂点对数据集划分后,能够让数据集的Gini下降最多(显著地减少了数据集输出变量的不纯度),则选为当前最佳的分割特征及分割点。代码如下:

# -*- coding: utf-8 -*-
"""
@author: kim
"""
import pandas as pd
import numpy as np
#import sklearn as sk
import math
def tree_grow(dataframe,target,min_leaf,min_dec_gini):
  tree={} #renew a tree
  is_not_leaf=(len(dataframe)>min_leaf)
  if is_not_leaf:
    fea,sp,gd=best_split_col(dataframe,target)
    if gd>min_dec_gini:
      tree['fea']=fea
      tree['val']=sp
#      dataframe.drop(fea,axis=1) #1116 modified
      l,r=dataSplit(dataframe,fea,sp)
      l.drop(fea,axis=1)
      r.drop(fea,axis=1)
      tree['left']=tree_grow(l,target,min_leaf,min_dec_gini)
      tree['right']=tree_grow(r,target,min_leaf,min_dec_gini)
    else:#return a leaf
      return leaf(dataframe[target])
  else:
    return leaf(dataframe[target])
  return tree
def leaf(class_lable):
  tmp={}
  for i in class_lable:
    if i in tmp:
      tmp[i]+=1
    else:
      tmp[i]=1
  s=pd.Series(tmp)
  s.sort(ascending=False)
  return s.index[0]
def gini_cal(class_lable):
  p_1=sum(class_lable)/len(class_lable)
  p_0=1-p_1
  gini=1-(pow(p_0,2)+pow(p_1,2))
  return gini
def dataSplit(dataframe,split_fea,split_val):
  left_node=dataframe[dataframe[split_fea]<=split_val]
  right_node=dataframe[dataframe[split_fea]>split_val]
  return left_node,right_node
def best_split_col(dataframe,target_name):
  best_fea=''#modified 1116
  best_split_point=0
  col_list=list(dataframe.columns)
  col_list.remove(target_name)
  gini_0=gini_cal(dataframe[target_name])
  n=len(dataframe)
  gini_dec=-99999999
  for col in col_list:
    node=dataframe[[col,target_name]]
    unique=node.groupby(col).count().index
    for split_point in unique: #unique value
      left_node,right_node=dataSplit(node,col,split_point)
      if len(left_node)>0 and len(right_node)>0:
        gini_col=gini_cal(left_node[target_name])*(len(left_node)/n)+gini_cal(right_node[target_name])*(len(right_node)/n)
        if (gini_0-gini_col)>gini_dec:
          gini_dec=gini_0-gini_col#decrease of impurity
          best_fea=col
          best_split_point=split_point
    #print(col,split_point,gini_0-gini_col)
  return best_fea,best_split_point,gini_dec
def model_prediction(model,row): #row is a df
  fea=model['fea']
  val=model['val']
  left=model['left']
  right=model['right']
  if row[fea].tolist()[0]<=val:#get the value
    branch=left
  else:
    branch=right
  if ('dict' in str( type(branch) )):
    prediction=model_prediction(branch,row)
  else:
    prediction=branch
  return prediction

实际上,上面的代码还有很大的效率提升的空间,数据集不是很大的情况下,如果选择一个较大的输入参数,例如生成100棵树,就会显著地变慢;同时,将预测结果提交至kaggle进行评测,发现在测试集上的正确率不是很高,比使用sklearn里面相应的包进行预测的正确率(0.77512)要稍低一点 :-(  如果要提升准确率,两个大方向: 构造新的特征;调整现有模型的参数。

这里是抛砖引玉,欢迎大家对我的建模思路和算法的实现方法提出修改意见。

希望本文所述对大家Python程序设计有所帮助。

Python 相关文章推荐
Cython 三分钟入门教程
Sep 17 Python
python自然语言编码转换模块codecs介绍
Apr 08 Python
pygame学习笔记(6):完成一个简单的游戏
Apr 15 Python
Windows下使Python2.x版本的解释器与3.x共存的方法
Oct 25 Python
Scrapy-redis爬虫分布式爬取的分析和实现
Feb 07 Python
Python 移动光标位置的方法
Jan 20 Python
Python numpy中矩阵的基本用法汇总
Feb 12 Python
django数据关系一对多、多对多模型、自关联的建立
Jul 24 Python
Python正则表达式急速入门(小结)
Dec 16 Python
pytorch 获取tensor维度信息示例
Jan 03 Python
python爬虫学习笔记之pyquery模块基本用法详解
Apr 09 Python
python boto和boto3操作bucket的示例
Oct 30 Python
Python决策树和随机森林算法实例详解
Jan 30 #Python
在Python 2.7即将停止支持时,我们为你带来了一份python 3.x迁移指南
Jan 30 #Python
python使用Tkinter实现在线音乐播放器
Jan 30 #Python
Python字典及字典基本操作方法详解
Jan 30 #Python
Python操作MySQL数据库的三种方法总结
Jan 30 #Python
python3.5 tkinter实现页面跳转
Jan 30 #Python
python 连接各类主流数据库的实例代码
Jan 30 #Python
You might like
PHP数组实例总结与说明
2011/08/23 PHP
PHP Cookei记录用户历史浏览信息的代码
2016/02/03 PHP
Laravel框架基于ajax实现二级联动功能示例
2019/01/17 PHP
Laravel5.1 框架Middleware中间件基本用法实例分析
2020/01/04 PHP
javascript 类方法定义还是有点区别
2009/04/15 Javascript
说说JSON和JSONP 也许你会豁然开朗
2012/09/02 Javascript
巧用jquery解决下拉菜单被Div遮挡的相关问题
2014/02/13 Javascript
jQuery选择器全集详解
2014/11/24 Javascript
超漂亮的jQuery图片轮播特效
2015/11/24 Javascript
微信小程序 switch组件详解及简单实例
2017/01/10 Javascript
jquery.flot.js简单绘制折线图用法示例
2017/03/13 Javascript
VueJS如何引入css或者less文件的一些坑
2017/04/25 Javascript
基于BootStrap multiselect.js实现的下拉框联动效果
2017/07/28 Javascript
AngularJS实现的2048小游戏功能【附源码下载】
2018/01/03 Javascript
vue检测对象和数组的变化分析
2018/06/30 Javascript
JavaScript实现的文本框placeholder提示文字功能示例
2018/07/25 Javascript
create-react-app安装出错问题解决方法
2018/09/04 Javascript
重学 JS:为啥 await 不能用在 forEach 中详解
2019/04/15 Javascript
electron实现静默打印的示例代码
2019/08/12 Javascript
JS实现选项卡插件的两种写法(jQuery和class)
2020/12/30 jQuery
python将ip地址转换成整数的方法
2015/03/17 Python
Python中线程的MQ消息队列实现以及消息队列的优点解析
2016/06/29 Python
python 调用win32pai 操作cmd的方法
2017/05/28 Python
解决python nohup linux 后台运行输出的问题
2018/05/11 Python
python 动态生成变量名以及动态获取变量的变量名方法
2019/01/20 Python
python字符串和常用数据结构知识总结
2019/05/21 Python
Python 数据可视化pyecharts的使用详解
2019/06/26 Python
Python英文文章词频统计(14份剑桥真题词频统计)
2019/10/13 Python
Python scrapy增量爬取实例及实现过程解析
2019/12/24 Python
python实现最短路径的实例方法
2020/07/19 Python
Mio Skincare法国官网:身体紧致及孕期身体护理
2018/04/04 全球购物
Theo + George官方网站:都柏林时尚品牌
2019/04/08 全球购物
研究生考核个人自我鉴定
2014/03/27 职场文书
节电标语大全
2014/06/23 职场文书
招商引资工作汇报材料
2014/10/28 职场文书
2014村书记党建工作汇报材料
2014/11/02 职场文书