Python实现的随机森林算法与简单总结


Posted in Python onJanuary 30, 2018

本文实例讲述了Python实现的随机森林算法。分享给大家供大家参考,具体如下:

随机森林是数据挖掘中非常常用的分类预测算法,以分类或回归的决策树为基分类器。算法的一些基本要点:

*对大小为m的数据集进行样本量同样为m的有放回抽样;
*对K个特征进行随机抽样,形成特征的子集,样本量的确定方法可以有平方根、自然对数等;
*每棵树完全生成,不进行剪枝;
*每个样本的预测结果由每棵树的预测投票生成(回归的时候,即各棵树的叶节点的平均)

著名的python机器学习包scikit learn的文档对此算法有比较详尽的介绍: http://scikit-learn.org/stable/modules/ensemble.html#random-forests

出于个人研究和测试的目的,基于经典的Kaggle 101泰坦尼克号乘客的数据集,建立模型并进行评估。比赛页面及相关数据集的下载:https://www.kaggle.com/c/titanic

泰坦尼克号的沉没,是历史上非常著名的海难。突然感到,自己面对的不再是冷冰冰的数据,而是用数据挖掘的方法,去研究具体的历史问题,也是饶有兴趣。言归正传,模型的主要的目标,是希望根据每个乘客的一系列特征,如性别、年龄、舱位、上船地点等,对其是否能生还进行预测,是非常典型的二分类预测问题。数据集的字段名及实例如下:

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
1 0 3 Braund, Mr. Owen Harris male 22 1 0 A/5 21171 7.25 S
2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Thayer) female 38 1 0 PC 17599 71.2833 C85 C
3 1 3 Heikkinen, Miss. Laina female 26 0 0 STON/O2. 3101282 7.925 S
4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35 1 0 113803 53.1 C123 S
5 0 3 Allen, Mr. William Henry male 35 0 0 373450 8.05 S

值得说明的是,SibSp是指sister brother spouse,即某个乘客随行的兄弟姐妹、丈夫、妻子的人数,Parch指parents,children

下面给出整个数据处理及建模过程,基于ubuntu+python 3.4( anaconda科学计算环境已经集成一系列常用包,pandas numpy sklearn等,这里强烈推荐)

懒得切换输入法,写的时候主要的注释都是英文,中文的注释是后来补充的:-)

# -*- coding: utf-8 -*-
"""
@author: kim
"""
from model import *#载入基分类器的代码
#ETL:same procedure to training set and test set
training=pd.read_csv('train.csv',index_col=0)
test=pd.read_csv('test.csv',index_col=0)
SexCode=pd.DataFrame([1,0],index=['female','male'],columns=['Sexcode']) #将性别转化为01
training=training.join(SexCode,how='left',on=training.Sex)
training=training.drop(['Name','Ticket','Embarked','Cabin','Sex'],axis=1)#删去几个不参与建模的变量,包括姓名、船票号,船舱号
test=test.join(SexCode,how='left',on=test.Sex)
test=test.drop(['Name','Ticket','Embarked','Cabin','Sex'],axis=1)
print('ETL IS DONE!')
#MODEL FITTING
#===============PARAMETER AJUSTMENT============
min_leaf=1
min_dec_gini=0.0001
n_trees=5
n_fea=int(math.sqrt(len(training.columns)-1))
#==============================================
'''''
BEST SCORE:0.83
min_leaf=30
min_dec_gini=0.001
n_trees=20
'''
#ESSEMBLE BY RANDOM FOREST
FOREST={}
tmp=list(training.columns)
tmp.pop(tmp.index('Survived'))
feaList=pd.Series(tmp)
for t in range(n_trees):
#  fea=[]
  feasample=feaList.sample(n=n_fea,replace=False)#select feature
  fea=feasample.tolist()
  fea.append('Survived')
#    feaNew=fea.append(target)
  subset=training.sample(n=len(training),replace=True)#generate the dataset with replacement
  subset=subset[fea]
#  print(str(t)+' Classifier built on feature:')
#  print(list(fea))
  FOREST[t]=tree_grow(subset,'Survived',min_leaf,min_dec_gini) #save the tree
#MODEL PREDICTION
#======================
currentdata=training
output='submission_rf_20151116_30_0.001_20'
#======================
prediction={}
for r in currentdata.index:#a row
  prediction_vote={1:0,0:0}
  row=currentdata.get(currentdata.index==r)
  for n in range(n_trees):
    tree_dict=FOREST[n] #a tree
    p=model_prediction(tree_dict,row)
    prediction_vote[p]+=1
  vote=pd.Series(prediction_vote)
  prediction[r]=list(vote.order(ascending=False).index)[0]#the vote result
result=pd.Series(prediction,name='Survived_p')
#del prediction_vote
#del prediction
#result.to_csv(output)
t=training.join(result,how='left')
accuracy=round(len(t[t['Survived']==t['Survived_p']])/len(t),5)
print(accuracy)

上述是随机森林的代码,如上所述,随机森林是一系列决策树的组合,决策树每次分裂,用Gini系数衡量当前节点的“不纯净度”,如果按照某个特征的某个分裂点对数据集划分后,能够让数据集的Gini下降最多(显著地减少了数据集输出变量的不纯度),则选为当前最佳的分割特征及分割点。代码如下:

# -*- coding: utf-8 -*-
"""
@author: kim
"""
import pandas as pd
import numpy as np
#import sklearn as sk
import math
def tree_grow(dataframe,target,min_leaf,min_dec_gini):
  tree={} #renew a tree
  is_not_leaf=(len(dataframe)>min_leaf)
  if is_not_leaf:
    fea,sp,gd=best_split_col(dataframe,target)
    if gd>min_dec_gini:
      tree['fea']=fea
      tree['val']=sp
#      dataframe.drop(fea,axis=1) #1116 modified
      l,r=dataSplit(dataframe,fea,sp)
      l.drop(fea,axis=1)
      r.drop(fea,axis=1)
      tree['left']=tree_grow(l,target,min_leaf,min_dec_gini)
      tree['right']=tree_grow(r,target,min_leaf,min_dec_gini)
    else:#return a leaf
      return leaf(dataframe[target])
  else:
    return leaf(dataframe[target])
  return tree
def leaf(class_lable):
  tmp={}
  for i in class_lable:
    if i in tmp:
      tmp[i]+=1
    else:
      tmp[i]=1
  s=pd.Series(tmp)
  s.sort(ascending=False)
  return s.index[0]
def gini_cal(class_lable):
  p_1=sum(class_lable)/len(class_lable)
  p_0=1-p_1
  gini=1-(pow(p_0,2)+pow(p_1,2))
  return gini
def dataSplit(dataframe,split_fea,split_val):
  left_node=dataframe[dataframe[split_fea]<=split_val]
  right_node=dataframe[dataframe[split_fea]>split_val]
  return left_node,right_node
def best_split_col(dataframe,target_name):
  best_fea=''#modified 1116
  best_split_point=0
  col_list=list(dataframe.columns)
  col_list.remove(target_name)
  gini_0=gini_cal(dataframe[target_name])
  n=len(dataframe)
  gini_dec=-99999999
  for col in col_list:
    node=dataframe[[col,target_name]]
    unique=node.groupby(col).count().index
    for split_point in unique: #unique value
      left_node,right_node=dataSplit(node,col,split_point)
      if len(left_node)>0 and len(right_node)>0:
        gini_col=gini_cal(left_node[target_name])*(len(left_node)/n)+gini_cal(right_node[target_name])*(len(right_node)/n)
        if (gini_0-gini_col)>gini_dec:
          gini_dec=gini_0-gini_col#decrease of impurity
          best_fea=col
          best_split_point=split_point
    #print(col,split_point,gini_0-gini_col)
  return best_fea,best_split_point,gini_dec
def model_prediction(model,row): #row is a df
  fea=model['fea']
  val=model['val']
  left=model['left']
  right=model['right']
  if row[fea].tolist()[0]<=val:#get the value
    branch=left
  else:
    branch=right
  if ('dict' in str( type(branch) )):
    prediction=model_prediction(branch,row)
  else:
    prediction=branch
  return prediction

实际上,上面的代码还有很大的效率提升的空间,数据集不是很大的情况下,如果选择一个较大的输入参数,例如生成100棵树,就会显著地变慢;同时,将预测结果提交至kaggle进行评测,发现在测试集上的正确率不是很高,比使用sklearn里面相应的包进行预测的正确率(0.77512)要稍低一点 :-(  如果要提升准确率,两个大方向: 构造新的特征;调整现有模型的参数。

这里是抛砖引玉,欢迎大家对我的建模思路和算法的实现方法提出修改意见。

希望本文所述对大家Python程序设计有所帮助。

Python 相关文章推荐
Python中的map、reduce和filter浅析
Apr 26 Python
Python过滤列表用法实例分析
Apr 29 Python
解决python文件字符串转列表时遇到空行的问题
Jul 09 Python
python矩阵的转置和逆转实例
Dec 12 Python
对Python中实现两个数的值交换的集中方法详解
Jan 11 Python
Python3日期与时间戳转换的几种方法详解
Jun 04 Python
Python read函数按字节(字符)读取文件的实现
Jul 03 Python
Python Opencv提取图片中某种颜色组成的图形的方法
Sep 19 Python
Python urllib2运行过程原理解析
Jun 04 Python
Pycharm2020最新激活码|永久激活(附最新激活码和插件的详细教程)
Sep 29 Python
Pycharm如何自动生成头文件注释
Nov 14 Python
python-jwt用户认证食用教学的实现方法
Jan 19 Python
Python决策树和随机森林算法实例详解
Jan 30 #Python
在Python 2.7即将停止支持时,我们为你带来了一份python 3.x迁移指南
Jan 30 #Python
python使用Tkinter实现在线音乐播放器
Jan 30 #Python
Python字典及字典基本操作方法详解
Jan 30 #Python
Python操作MySQL数据库的三种方法总结
Jan 30 #Python
python3.5 tkinter实现页面跳转
Jan 30 #Python
python 连接各类主流数据库的实例代码
Jan 30 #Python
You might like
测试php连接mysql是否成功的代码分享
2014/01/24 PHP
php获取apk包信息的方法
2014/08/15 PHP
Zend Framework实现多文件上传功能实例
2016/03/21 PHP
Win7环境下Apache连接MySQL提示连接已重置的解决办法
2017/05/09 PHP
彪哥1.1(智能表格)提供下载
2006/09/07 Javascript
$.ajax json数据传递方法
2008/11/19 Javascript
ASP小贴士/ASP Tips javascript tips可以当桌面
2009/12/10 Javascript
利用jQuery操作对象数组的实现代码
2011/04/27 Javascript
node.js中的fs.lchmodSync方法使用说明
2014/12/16 Javascript
jQuery中position()方法用法实例
2015/01/16 Javascript
javascript文本框内输入文字倒计数的方法
2015/02/24 Javascript
jQuery实现的经典滑动门效果
2015/09/22 Javascript
javascript实现简单的ajax封装示例
2016/12/28 Javascript
vue的安装及element组件的安装方法
2018/03/09 Javascript
使用express获取微信小程序二维码小记
2019/05/21 Javascript
vue-dplayer 视频播放器实例代码
2019/11/08 Javascript
原生js实现碰撞检测
2020/03/12 Javascript
[06:04]DOTA2英雄梦之声Vol19卓尔游侠
2014/06/20 DOTA
[06:11]2014DOTA2国际邀请赛 专访团结一心的VG战队
2014/07/21 DOTA
[05:31]干嘛呢兄弟!DOTA2 TI9语音轮盘部分出处
2019/05/14 DOTA
在PyCharm下使用 ipython 交互式编程的方法
2019/01/17 Python
pyqt5利用pyqtDesigner实现登录界面
2019/03/28 Python
Python生成器实现简单&quot;生产者消费者&quot;模型代码实例
2020/03/27 Python
美国家用电器和电子产品商店:Abt
2016/09/06 全球购物
尤妮佳moony海外旗舰店:日本殿堂级纸尿裤品牌
2018/02/23 全球购物
加拿大领先的时尚和体育零售商:Sporting Life
2019/12/15 全球购物
YBF Beauty官网:美丽挚友,美国知名彩妆品牌
2020/11/22 全球购物
寒假思想汇报
2014/01/10 职场文书
课改先进个人汇报材料
2014/01/26 职场文书
个人授权委托书格式
2014/08/30 职场文书
2014第二批党员干部对照“四风”找差距检查材料思想汇报
2014/09/18 职场文书
市级三好学生评语
2014/12/29 职场文书
客服专员岗位职责范本
2015/04/07 职场文书
2015年文秘个人工作总结
2015/10/14 职场文书
详解在OpenCV中如何使用图像像素
2022/03/03 Python
分享Python异步爬取知乎热榜
2022/04/12 Python