轻松实现TensorFlow微信跳一跳的AI


Posted in Python onJanuary 05, 2018

作为python和机器学习的初学者,目睹了AI玩游戏的各种风骚操作,心里也是跃跃欲试。

然后发现微信跳一跳很符合需求,因为它不需要处理连续画面(截屏太慢了)和复杂的操作,很适合拿来练手。于是…这个东西诞生了,目前它一般都可以跳到100多分,发挥好了能上200。

1.需要设备:

Android手机,数据线
ADB环境
Python环境(本例使用3.6.1)
TensorFlow(本例使用1.0.0)

2.大致原理

使用adb模拟点击和截屏,使用两层卷积神经网络作为训练模型,截屏图片作为输入,按压毫秒数直接作为为输出。

3.训练过程

最开始想的用强化学习,然后发现让它自己去玩成功率太!低!了!,加上每次截屏需要大量时间,就放弃了这个方法,于是考虑用自己玩的数据作为样本喂给它,这样就需要知道每次按压的时间。

我是这样做的,找一个手机写个app监听按压屏幕时间,另一个手机玩游戏,然后两个手指同时按两个手机o(?□?)o

4.上代码

首先,搭建模型:

第一层卷积:5*5的卷积核,12个featuremap,此时形状为96*96*12
池化层:4*4 max pooling,此时形状为24*24*12
第二层卷积:5*5的卷积核,24个featuremap,此时形状为20*20*24
池化层:4*4 max pooling,此时形状为5*5*24
全连接层:5*5*24连接到32个节点,使用relu激活函数和0.4的dropout率
输出:32个节点连接到1个节点,此节点就代表按压的时间(单位s)

# 输入:100*100的灰度图片,前面的None是batch size,这里都为1 
x = tf.placeholder(tf.float32, shape=[None, 100, 100, 1]) 
# 输出:一个浮点数,就是按压时间,单位s 
y_ = tf.placeholder(tf.float32, shape=[None, 1]) 
 
# 第一层卷积 12个feature map 
W_conv1 = weight_variable([5, 5, 1, 12], 0.1) 
b_conv1 = bias_variable([12], 0.1) 
# 卷积后为96*96*12 
 
h_conv1 = tf.nn.relu(conv2d(x, W_conv1) + b_conv1) 
h_pool1 = max_pool_4x4(h_conv1) 
# 池化后为24*24*12 
 
# 第二层卷积 24个feature map 
W_conv2 = weight_variable([5, 5, 12, 24], 0.1) 
b_conv2 = bias_variable([24], 0.1) 
# 卷积后为20*20*24 
 
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) 
h_pool2 = max_pool_4x4(h_conv2) 
# 池化后为5*5*24 
 
# 全连接层5*5*24 --> 32 
W_fc1 = weight_variable([5 * 5 * 24, 32], 0.1) 
b_fc1 = bias_variable([32], 0.1) 
h_pool2_flat = tf.reshape(h_pool2, [-1, 5 * 5 * 24]) 
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) 
 
# drapout,play时为1训练时为0.6 
keep_prob = tf.placeholder(tf.float32) 
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) 
# 学习率 
learn_rate = tf.placeholder(tf.float32) 
 
# 32 --> 1 
W_fc2 = weight_variable([32, 1], 0.1) 
b_fc2 = bias_variable([1], 0.1) 
y_fc2 = tf.matmul(h_fc1_drop, W_fc2) + b_fc2 
 
# 因输出直接是时间值,而不是分类概率,所以用平方损失 
cross_entropy = tf.reduce_mean(tf.square(y_fc2 - y_)) 
train_step = tf.train.AdamOptimizer(learn_rate).minimize(cross_entropy)

其次,获取屏幕截图并转换为模型输入:

# 获取屏幕截图并转换为模型的输入 
def get_screen_shot(): 
  # 使用adb命令截图并获取图片,这里如果把后缀改成jpg会导致TensorFlow读不出来 
  os.system('adb shell screencap -p /sdcard/jump_temp.png') 
  os.system('adb pull /sdcard/jump_temp.png .') 
  # 使用PIL处理图片,并转为jpg 
  im = Image.open(r"./jump_temp.png") 
  w, h = im.size 
  # 将图片压缩,并截取中间部分,截取后为100*100 
  im = im.resize((108, 192), Image.ANTIALIAS) 
  region = (4, 50, 104, 150) 
  im = im.crop(region) 
  # 转换为jpg 
  bg = Image.new("RGB", im.size, (255, 255, 255)) 
  bg.paste(im, im) 
  bg.save(r"./jump_temp.jpg") 
 
  img_data = tf.image.decode_jpeg(tf.gfile.FastGFile('./jump_temp.jpg', 'rb').read()) 
  # 使用TensorFlow转为只有1通道的灰度图 
  img_data_gray = tf.image.rgb_to_grayscale(img_data) 
  x_in = np.asarray(img_data_gray.eval(), dtype='float32') 
 
  # [0,255]转为[0,1]浮点 
  for i in range(len(x_in)): 
    for j in range(len(x_in[i])): 
      x_in[i][j][0] /= 255 
 
  # 因为输入shape有batch维度,所以还要套一层 
  return [x_in]

以上代码过程大概是这样:

轻松实现TensorFlow微信跳一跳的AI

最后,开始训练:

while True: 
 
  ………… 
 
  # 每训练100个保存一次 
  if train_count % 100 == 0: 
    saver_init.save(sess, "./save/mode.mod") 
 
  …………   
  
  sess.run(train_step, feed_dict={x: x_in, y_: y_out, keep_prob: 0.6, learn_rate: 0.00005})

训练所用数据是直接从采集好的文件中读取的,由于样本有限(目前采集了800张图和对应800个按压时间,在github上train_data文件夹里),并且学习率太大又会震荡,只能用较小学习率反复学习这些图片。

5.总结

1.样本的按压时间大都分布在300ms到900ms之间,刚开始训练的时候发现不论什么输入,输出都一直很谨慎的停留在600左右,还以为这种方法不可行。不过半个小时后再看发现已经有效果了,对于不同的输入,输出值差距开始变大了。所以…相信卷积网络的威力,多给它点耐心。

2.由于我自己最多玩到100多分,后面的数据没法采集到,所以当后面物体变得越来越小时,这个AI也会变得容易挂掉。理论上说让它自己探索不会有这个瓶颈,只是截屏时间实在难以忍受。

3.目前还是初级的版本,有很多可以优化的地方,比如说识别左上角的分数,如果某次跳跃得分较高,那么可以把这次的学习率增大;检测特殊物体,比如超市音乐盒,就停留几秒再进行下一次跳跃,等等。

下面是github地址,源码加注释总共不到300行:
https://github.com/zhanyongsheng/LetsJump

更多内容大家可以参考专题《微信跳一跳》进行学习。

Python 相关文章推荐
python实现定时播放mp3
Mar 29 Python
Python单链表简单实现代码
Apr 27 Python
python实现列表中由数值查到索引的方法
Jun 27 Python
深入理解python中sort()与sorted()的区别
Aug 29 Python
Python PyAutoGUI模块控制鼠标和键盘实现自动化任务详解
Sep 04 Python
IntelliJ IDEA安装运行python插件方法
Dec 10 Python
详解python中自定义超时异常的几种方法
Jul 29 Python
Python post请求实现代码实例
Feb 28 Python
python爬虫开发之使用Python爬虫库requests多线程抓取猫眼电影TOP100实例
Mar 10 Python
Python多线程Threading、子线程与守护线程实例详解
Mar 24 Python
Python实现对word文档添加密码去除密码的示例代码
Dec 29 Python
java关于string最常出现的面试题整理
Jan 18 Python
OpenCV-Python实现轮廓检测实例分析
Jan 05 #Python
django2 快速安装指南分享
Jan 05 #Python
Python实现改变与矩形橡胶的线条的颜色代码示例
Jan 05 #Python
用python制作游戏外挂
Jan 04 #Python
Python学习之Anaconda的使用与配置方法
Jan 04 #Python
Windows下Anaconda的安装和简单使用方法
Jan 04 #Python
Python+OpenCV让电脑帮你玩微信跳一跳
Jan 04 #Python
You might like
实现php加速的eAccelerator dll支持文件打包下载
2007/09/30 PHP
php+MySQL判断update语句是否执行成功的方法
2014/08/28 PHP
PHP使用观察者模式处理异常信息的方法详解
2019/09/24 PHP
写的htc的数据表格
2007/01/20 Javascript
javascript 特殊字符串
2009/02/25 Javascript
JavaScript中的onerror事件概述及使用
2013/04/01 Javascript
jquery拖动插件(jquery.drag)使用介绍
2013/06/18 Javascript
js实现同一页面可多次调用的图片幻灯切换效果
2015/02/28 Javascript
javascript通过元素id和name直接取得元素的方法
2015/04/28 Javascript
javascript弹出拖动窗口
2015/08/11 Javascript
JavaScript中捕获/阻止捕获、冒泡/阻止冒泡方法
2016/12/07 Javascript
Vue.js 2.0窥探之Virtual DOM到底是什么?
2017/02/10 Javascript
Vue中的slot使用插槽分发内容的方法
2018/03/01 Javascript
vue实现配置全局访问路径头(axios)
2019/11/01 Javascript
Python random模块常用方法
2014/11/03 Python
Python连接mssql数据库编码问题解决方法
2015/01/01 Python
Python中集合类型(set)学习小结
2015/01/28 Python
基于Python实现的微信好友数据分析
2018/02/26 Python
TensorFlow平台下Python实现神经网络
2018/03/10 Python
浅谈Django2.0 加xadmin踩的坑
2019/11/15 Python
Anaconda+VSCode配置tensorflow开发环境的教程详解
2020/03/30 Python
python opencv pytesseract 验证码识别的实现
2020/08/28 Python
Python入门基础之数字字符串与列表
2021/02/01 Python
PyCharm+Miniconda3安装配置教程详解
2021/02/16 Python
CSS3制作气泡对话框的实例教程
2016/05/10 HTML / CSS
基于CSS3的animation属性实现微信拍一拍动画效果
2020/06/22 HTML / CSS
浅析HTML5:'data-'属性的作用
2018/01/23 HTML / CSS
丝芙兰香港官网:Sephora香港
2018/03/13 全球购物
Pamela Love官网:纽约设计师Pamela Love的精美、时尚和穿孔珠宝
2020/10/19 全球购物
一家外企的面试题目(C/C++面试题,C语言面试题)
2014/03/24 面试题
大学生的创业计划书就该这么写
2014/01/30 职场文书
采购员岗位职责
2015/02/03 职场文书
学雷锋献爱心倡议书
2015/04/27 职场文书
银行柜员优质服务心得体会
2016/01/22 职场文书
《月光曲》教学反思
2016/02/16 职场文书
海弦WR-800F
2022/04/05 无线电