轻松实现TensorFlow微信跳一跳的AI


Posted in Python onJanuary 05, 2018

作为python和机器学习的初学者,目睹了AI玩游戏的各种风骚操作,心里也是跃跃欲试。

然后发现微信跳一跳很符合需求,因为它不需要处理连续画面(截屏太慢了)和复杂的操作,很适合拿来练手。于是…这个东西诞生了,目前它一般都可以跳到100多分,发挥好了能上200。

1.需要设备:

Android手机,数据线
ADB环境
Python环境(本例使用3.6.1)
TensorFlow(本例使用1.0.0)

2.大致原理

使用adb模拟点击和截屏,使用两层卷积神经网络作为训练模型,截屏图片作为输入,按压毫秒数直接作为为输出。

3.训练过程

最开始想的用强化学习,然后发现让它自己去玩成功率太!低!了!,加上每次截屏需要大量时间,就放弃了这个方法,于是考虑用自己玩的数据作为样本喂给它,这样就需要知道每次按压的时间。

我是这样做的,找一个手机写个app监听按压屏幕时间,另一个手机玩游戏,然后两个手指同时按两个手机o(?□?)o

4.上代码

首先,搭建模型:

第一层卷积:5*5的卷积核,12个featuremap,此时形状为96*96*12
池化层:4*4 max pooling,此时形状为24*24*12
第二层卷积:5*5的卷积核,24个featuremap,此时形状为20*20*24
池化层:4*4 max pooling,此时形状为5*5*24
全连接层:5*5*24连接到32个节点,使用relu激活函数和0.4的dropout率
输出:32个节点连接到1个节点,此节点就代表按压的时间(单位s)

# 输入:100*100的灰度图片,前面的None是batch size,这里都为1 
x = tf.placeholder(tf.float32, shape=[None, 100, 100, 1]) 
# 输出:一个浮点数,就是按压时间,单位s 
y_ = tf.placeholder(tf.float32, shape=[None, 1]) 
 
# 第一层卷积 12个feature map 
W_conv1 = weight_variable([5, 5, 1, 12], 0.1) 
b_conv1 = bias_variable([12], 0.1) 
# 卷积后为96*96*12 
 
h_conv1 = tf.nn.relu(conv2d(x, W_conv1) + b_conv1) 
h_pool1 = max_pool_4x4(h_conv1) 
# 池化后为24*24*12 
 
# 第二层卷积 24个feature map 
W_conv2 = weight_variable([5, 5, 12, 24], 0.1) 
b_conv2 = bias_variable([24], 0.1) 
# 卷积后为20*20*24 
 
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) 
h_pool2 = max_pool_4x4(h_conv2) 
# 池化后为5*5*24 
 
# 全连接层5*5*24 --> 32 
W_fc1 = weight_variable([5 * 5 * 24, 32], 0.1) 
b_fc1 = bias_variable([32], 0.1) 
h_pool2_flat = tf.reshape(h_pool2, [-1, 5 * 5 * 24]) 
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) 
 
# drapout,play时为1训练时为0.6 
keep_prob = tf.placeholder(tf.float32) 
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) 
# 学习率 
learn_rate = tf.placeholder(tf.float32) 
 
# 32 --> 1 
W_fc2 = weight_variable([32, 1], 0.1) 
b_fc2 = bias_variable([1], 0.1) 
y_fc2 = tf.matmul(h_fc1_drop, W_fc2) + b_fc2 
 
# 因输出直接是时间值,而不是分类概率,所以用平方损失 
cross_entropy = tf.reduce_mean(tf.square(y_fc2 - y_)) 
train_step = tf.train.AdamOptimizer(learn_rate).minimize(cross_entropy)

其次,获取屏幕截图并转换为模型输入:

# 获取屏幕截图并转换为模型的输入 
def get_screen_shot(): 
  # 使用adb命令截图并获取图片,这里如果把后缀改成jpg会导致TensorFlow读不出来 
  os.system('adb shell screencap -p /sdcard/jump_temp.png') 
  os.system('adb pull /sdcard/jump_temp.png .') 
  # 使用PIL处理图片,并转为jpg 
  im = Image.open(r"./jump_temp.png") 
  w, h = im.size 
  # 将图片压缩,并截取中间部分,截取后为100*100 
  im = im.resize((108, 192), Image.ANTIALIAS) 
  region = (4, 50, 104, 150) 
  im = im.crop(region) 
  # 转换为jpg 
  bg = Image.new("RGB", im.size, (255, 255, 255)) 
  bg.paste(im, im) 
  bg.save(r"./jump_temp.jpg") 
 
  img_data = tf.image.decode_jpeg(tf.gfile.FastGFile('./jump_temp.jpg', 'rb').read()) 
  # 使用TensorFlow转为只有1通道的灰度图 
  img_data_gray = tf.image.rgb_to_grayscale(img_data) 
  x_in = np.asarray(img_data_gray.eval(), dtype='float32') 
 
  # [0,255]转为[0,1]浮点 
  for i in range(len(x_in)): 
    for j in range(len(x_in[i])): 
      x_in[i][j][0] /= 255 
 
  # 因为输入shape有batch维度,所以还要套一层 
  return [x_in]

以上代码过程大概是这样:

轻松实现TensorFlow微信跳一跳的AI

最后,开始训练:

while True: 
 
  ………… 
 
  # 每训练100个保存一次 
  if train_count % 100 == 0: 
    saver_init.save(sess, "./save/mode.mod") 
 
  …………   
  
  sess.run(train_step, feed_dict={x: x_in, y_: y_out, keep_prob: 0.6, learn_rate: 0.00005})

训练所用数据是直接从采集好的文件中读取的,由于样本有限(目前采集了800张图和对应800个按压时间,在github上train_data文件夹里),并且学习率太大又会震荡,只能用较小学习率反复学习这些图片。

5.总结

1.样本的按压时间大都分布在300ms到900ms之间,刚开始训练的时候发现不论什么输入,输出都一直很谨慎的停留在600左右,还以为这种方法不可行。不过半个小时后再看发现已经有效果了,对于不同的输入,输出值差距开始变大了。所以…相信卷积网络的威力,多给它点耐心。

2.由于我自己最多玩到100多分,后面的数据没法采集到,所以当后面物体变得越来越小时,这个AI也会变得容易挂掉。理论上说让它自己探索不会有这个瓶颈,只是截屏时间实在难以忍受。

3.目前还是初级的版本,有很多可以优化的地方,比如说识别左上角的分数,如果某次跳跃得分较高,那么可以把这次的学习率增大;检测特殊物体,比如超市音乐盒,就停留几秒再进行下一次跳跃,等等。

下面是github地址,源码加注释总共不到300行:
https://github.com/zhanyongsheng/LetsJump

更多内容大家可以参考专题《微信跳一跳》进行学习。

Python 相关文章推荐
Windows下python2.7.8安装图文教程
May 26 Python
Python实现基于二叉树存储结构的堆排序算法示例
Dec 08 Python
python3+PyQt5实现自定义窗口部件Counters
Apr 20 Python
django将图片上传数据库后在前端显式的方法
May 25 Python
pyqt5 禁止窗口最大化和禁止窗口拉伸的方法
Jun 18 Python
Django框架创建mysql连接与使用示例
Jul 29 Python
Python使用Slider组件实现调整曲线参数功能示例
Sep 06 Python
MNIST数据集转化为二维图片的实现示例
Jan 10 Python
详解python破解zip文件密码的方法
Jan 13 Python
python程序如何进行保存
Jul 03 Python
python中编写函数并调用的知识点总结
Jan 13 Python
Python截图并保存的具体实例
Jan 14 Python
OpenCV-Python实现轮廓检测实例分析
Jan 05 #Python
django2 快速安装指南分享
Jan 05 #Python
Python实现改变与矩形橡胶的线条的颜色代码示例
Jan 05 #Python
用python制作游戏外挂
Jan 04 #Python
Python学习之Anaconda的使用与配置方法
Jan 04 #Python
Windows下Anaconda的安装和简单使用方法
Jan 04 #Python
Python+OpenCV让电脑帮你玩微信跳一跳
Jan 04 #Python
You might like
php设计模式 Adapter(适配器模式)
2011/06/26 PHP
PHP的反射类ReflectionClass、ReflectionMethod使用实例
2014/08/05 PHP
浅析ThinkPHP缓存之快速缓存(F方法)和动态缓存(S方法)(日常整理)
2015/10/26 PHP
简单实现php上传文件功能
2017/09/21 PHP
Aster vs Newbee BO5 第一场2.19
2021/03/10 DOTA
Javascript 布尔型分析
2008/12/22 Javascript
一个报数游戏js版(约瑟夫环问题)
2010/08/05 Javascript
jQuery提交多个表单的小例子
2013/06/30 Javascript
Extjs4中的分页应用结合前后台
2013/12/13 Javascript
JavaScript中对象介绍
2014/12/31 Javascript
当jquery ajax遇上401请求的解决方法
2016/05/19 Javascript
Javascript 判断两个IP是否在同一网段实例代码
2016/11/28 Javascript
SVG动画vivus.js库使用小结(实例代码)
2017/09/14 Javascript
关于Angularjs中跨域设置白名单问题
2018/04/17 Javascript
解决vue脚手架项目打包后路由视图不显示的问题
2018/09/20 Javascript
vue element-ui el-date-picker限制选择时间为当天之前的代码
2019/11/07 Javascript
vue flex 布局实现div均分自动换行的示例代码
2020/08/05 Javascript
Python切片用法实例教程
2014/09/08 Python
python的Template使用指南
2014/09/11 Python
Python入门_条件控制(详解)
2017/05/16 Python
python 如何快速找出两个电子表中数据的差异
2017/05/26 Python
Python中协程用法代码详解
2018/02/10 Python
Python模块的加载讲解
2019/01/15 Python
python使用PIL剪切和拼接图片
2020/03/23 Python
python3.6使用SMTP协议发送邮件
2020/05/20 Python
基于python实现音乐播放器代码实例
2020/07/01 Python
Python list和str互转的实现示例
2020/11/16 Python
微软开源最强Python自动化神器Playwright(不用写一行代码)
2021/01/05 Python
程序设计HTML5 Canvas API
2013/04/08 HTML / CSS
伦敦所有西区剧院演出官方票务代理:Theatre Tickets Direct
2017/05/26 全球购物
Raffaello Network德国:意大利拉斐尔时尚购物网
2019/05/01 全球购物
什么是SCM(软件配置管理)
2014/08/16 面试题
合作协议书范本
2014/04/17 职场文书
关于环保的演讲稿
2014/05/10 职场文书
工作失职检讨书范文
2015/05/05 职场文书
Python3 多线程(连接池)操作MySQL插入数据
2021/06/09 Python