python编程通过蒙特卡洛法计算定积分详解


Posted in Python onDecember 13, 2017

想当初,考研的时候要是知道有这么个好东西,计算定积分。。。开玩笑,那时候计算定积分根本没有这么简单的。但这确实给我打开了一种思路,用编程语言去解决更多更复杂的数学问题。下面进入正题。

python编程通过蒙特卡洛法计算定积分详解

如上图所示,计算区间[a b]上f(x)的积分即求曲线与X轴围成红色区域的面积。下面使用蒙特卡洛法计算区间[2 3]上的定积分:∫(x2+4*x*sin(x))dx

# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt

def f(x):
  return x**2 + 4*x*np.sin(x) 
def intf(x): 
  return x**3/3.0+4.0*np.sin(x) - 4.0*x*np.cos(x)
a = 2;  
b = 3; 
# use N draws 
N= 10000
X = np.random.uniform(low=a, high=b, size=N) # N values uniformly drawn from a to b 
Y =f(X)  # CALCULATE THE f(x) 
# 蒙特卡洛法计算定积分:面积=宽度*平均高度
Imc= (b-a) * np.sum(Y)/ N;
exactval=intf(b)-intf(a)
print "Monte Carlo estimation=",Imc, "Exact number=", intf(b)-intf(a)
# --How does the accuracy depends on the number of points(samples)? Lets try the same 1-D integral 
# The Monte Carlo methods yield approximate answers whose accuracy depends on the number of draws.
Imc=np.zeros(1000)
Na = np.linspace(0,1000,1000)
exactval= intf(b)-intf(a)
for N in np.arange(0,1000):
  X = np.random.uniform(low=a, high=b, size=N) # N values uniformly drawn from a to b 
  Y =f(X)  # CALCULATE THE f(x) 
  Imc[N]= (b-a) * np.sum(Y)/ N;   
plt.plot(Na[10:],np.sqrt((Imc[10:]-exactval)**2), alpha=0.7)
plt.plot(Na[10:], 1/np.sqrt(Na[10:]), 'r')
plt.xlabel("N")
plt.ylabel("sqrt((Imc-ExactValue)$^2$)")
plt.show()

>>>

Monte Carlo estimation= 11.8181144118 Exact number= 11.8113589251

python编程通过蒙特卡洛法计算定积分详解

从上图可以看出,随着采样点数的增加,计算误差逐渐减小。想要提高模拟结果的精确度有两个途径:其一是增加试验次数N;其二是降低方差σ2. 增加试验次数势必使解题所用计算机的总时间增加,要想以此来达到提高精度之目的显然是不合适的。下面来介绍重要抽样法来减小方差,提高积分计算的精度。

重要性抽样法的特点在于,它不是从给定的过程的概率分布抽样,而是从修改的概率分布抽样,使对模拟结果有重要作用的事件更多出现,从而提高抽样效率,减少花费在对模拟结果无关紧要的事件上的计算时间。比如在区间[a b]上求g(x)的积分,若采用均匀抽样,在函数值g(x)比较小的区间内产生的抽样点跟函数值较大处区间内产生的抽样点的数目接近,显然抽样效率不高,可以将抽样概率密度函数改为f(x),使f(x)与g(x)的形状相近,就可以保证对积分计算贡献较大的抽样值出现的机会大于贡献小的抽样值,即可以将积分运算改写为:

python编程通过蒙特卡洛法计算定积分详解

x是按照概率密度f(x)抽样获得的随机变量,显然在区间[a b]内应该有:

python编程通过蒙特卡洛法计算定积分详解

因此,可容易将积分值I看成是随机变量 Y = g(x)/f(x)的期望,式子中xi是服从概率密度f(x)的采样点

python编程通过蒙特卡洛法计算定积分详解

下面的例子采用一个正态分布函数f(x)来近似g(x)=sin(x)*x,并依据正态分布选取采样值计算区间[0 pi]上的积分个∫g(x)dx

# -*- coding: utf-8 -*-
# Example: Calculate ∫sin(x)xdx

# The function has a shape that is similar to Gaussian and therefore
# we choose here a Gaussian as importance sampling distribution.
from scipy import stats
from scipy.stats import norm
import numpy as np
import matplotlib.pyplot as plt
mu = 2;
sig =.7;
f = lambda x: np.sin(x)*x
infun = lambda x: np.sin(x)-x*np.cos(x)
p = lambda x: (1/np.sqrt(2*np.pi*sig**2))*np.exp(-(x-mu)**2/(2.0*sig**2))
normfun = lambda x: norm.cdf(x-mu, scale=sig)

plt.figure(figsize=(18,8)) # set the figure size
# range of integration
xmax =np.pi 
xmin =0
# Number of draws 
N =1000
# Just want to plot the function
x=np.linspace(xmin, xmax, 1000)
plt.subplot(1,2,1)
plt.plot(x, f(x), 'b', label=u'Original $x\sin(x)$')
plt.plot(x, p(x), 'r', label=u'Importance Sampling Function: Normal')
plt.xlabel('x')
plt.legend()
# =============================================
# EXACT SOLUTION 
# =============================================
Iexact = infun(xmax)-infun(xmin)
print Iexact
# ============================================
# VANILLA MONTE CARLO 
# ============================================
Ivmc = np.zeros(1000)
for k in np.arange(0,1000):
  x = np.random.uniform(low=xmin, high=xmax, size=N)
  Ivmc[k] = (xmax-xmin)*np.mean(f(x))
# ============================================
# IMPORTANCE SAMPLING 
# ============================================
# CHOOSE Gaussian so it similar to the original functions

# Importance sampling: choose the random points so that
# more points are chosen around the peak, less where the integrand is small.
Iis = np.zeros(1000)
for k in np.arange(0,1000):
  # DRAW FROM THE GAUSSIAN: xis~N(mu,sig^2)
  xis = mu + sig*np.random.randn(N,1);
  xis = xis[ (xis<xmax) & (xis>xmin)] ;
  # normalization for gaussian from 0..pi
  normal = normfun(np.pi)-normfun(0)   # 注意:概率密度函数在采样区间[0 pi]上的积分需要等于1
  Iis[k] =np.mean(f(xis)/p(xis))*normal  # 因此,此处需要乘一个系数即p(x)在[0 pi]上的积分
plt.subplot(1,2,2)
plt.hist(Iis,30, histtype='step', label=u'Importance Sampling');
plt.hist(Ivmc, 30, color='r',histtype='step', label=u'Vanilla MC');
plt.vlines(np.pi, 0, 100, color='g', linestyle='dashed')
plt.legend()
plt.show()

python编程通过蒙特卡洛法计算定积分详解

从图中可以看出曲线sin(x)*x的形状和正态分布曲线的形状相近,因此在曲线峰值处的采样点数目会比曲线上位置低的地方要多。精确计算的结果为pi,从上面的右图中可以看出:两种方法均计算定积分1000次,靠近精确值pi=3.1415处的结果最多,离精确值越远数目越少,显然这符合常规。但是采用传统方法(红色直方图)计算出的积分值方的差明显比采用重要抽样法(蓝色直方图)要大。因此,采用重要抽样法计算可以降低方差,提高精度。另外需要注意的是:关于函数f(x)的选择会对计算结果的精度产生影响,当我们选择的函数f(x)与g(x)相差较大时,计算结果的方差也会加大。

总结

以上就是本文关于python编程通过蒙特卡洛法计算定积分详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:

如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

Python 相关文章推荐
python使用webbrowser浏览指定url的方法
Apr 04 Python
Python扫描IP段查看指定端口是否开放的方法
Jun 09 Python
Python简单实现TCP包发送十六进制数据的方法
Apr 16 Python
Python编写合并字典并实现敏感目录的小脚本
Feb 26 Python
django admin.py 外键,反向查询的实例
Jul 26 Python
Python之Numpy的超实用基础详细教程
Oct 23 Python
Python Tricks 使用 pywinrm 远程控制 Windows 主机的方法
Jul 21 Python
Pycharm如何自动生成头文件注释
Nov 14 Python
python 简单的调用有道翻译
Nov 25 Python
python爬虫之爬取笔趣阁小说
Apr 22 Python
python 实现图片特效处理
Apr 03 Python
Python爬虫 简单介绍一下Xpath及使用
Apr 26 Python
Python编程产生非均匀随机数的几种方法代码分享
Dec 13 #Python
windows下Virtualenvwrapper安装教程
Dec 13 #Python
python实现机械分词之逆向最大匹配算法代码示例
Dec 13 #Python
Python语言描述KNN算法与Kd树
Dec 13 #Python
Python xlwt设置excel单元格字体及格式
Apr 18 #Python
Python语言实现百度语音识别API的使用实例
Dec 13 #Python
Python通过matplotlib绘制动画简单实例
Dec 13 #Python
You might like
php分页函数
2006/07/08 PHP
PHP+javascript液晶时钟
2006/10/09 PHP
MySQL 日期时间函数常用总结
2012/06/12 PHP
Android ProgressBar进度条和ProgressDialog进度框的展示DEMO
2013/06/19 PHP
一个基于phpQuery的php通用采集类分享
2014/04/09 PHP
PHP使用HTML5 FileApi实现Ajax上传文件功能示例
2019/07/01 PHP
laravel5.1框架基础之Blade模板继承简单使用方法分析
2019/09/05 PHP
jQuery获取文本节点之 text()/val()/html() 方法区别
2011/03/01 Javascript
判断js对象是否拥有某一个属性的js代码
2013/08/16 Javascript
js修改input的type属性问题探讨
2013/10/12 Javascript
原生JS实现响应式瀑布流布局
2015/04/02 Javascript
JS+CSS简单树形菜单实现方法
2015/09/12 Javascript
跟我学习javascript的全局变量
2015/11/16 Javascript
javascript的BOM
2016/05/03 Javascript
深入探讨Vue.js组件和组件通信
2016/09/12 Javascript
Bootstrap和Java分页实例第二篇
2016/12/23 Javascript
AngularJS执行流程详解
2017/02/17 Javascript
JS实现提交表单前的数字及邮箱校检功能
2017/11/13 Javascript
Vue.js点击切换按钮改变内容的实例讲解
2018/08/22 Javascript
傻瓜式vuex语法糖kiss-vuex整理
2018/12/21 Javascript
Vue-CLI 项目在pycharm中配置方法
2019/08/30 Javascript
vue中父子组件的参数传递和应用示例
2021/01/04 Vue.js
[04:44]显微镜下的DOTA2第二期——你所没有注意到的细节
2014/06/20 DOTA
[45:25]完美世界DOTA2联赛循环赛 PXG vs IO 第一场 11.06
2020/11/09 DOTA
pygame实现弹力球及其变速效果
2017/07/03 Python
NetworkX之Prim算法(实例讲解)
2017/12/22 Python
使用Python来开发微信功能
2018/06/13 Python
Python网页解析器使用实例详解
2020/05/30 Python
python语言中有算法吗
2020/06/16 Python
Python: glob匹配文件的操作
2020/12/11 Python
html5声频audio和视频video等新特性详细说明
2012/12/26 HTML / CSS
Hunter Boots美国官方网站:赫特威灵顿雨靴
2018/06/16 全球购物
维氏瑞士军刀英国网站:Victorinox英国
2019/07/04 全球购物
挑战杯创业计划书的写作指南
2014/01/07 职场文书
《会走路的树》教后反思
2014/04/19 职场文书
出纳试用期自我鉴定范文
2014/09/16 职场文书