python编程通过蒙特卡洛法计算定积分详解


Posted in Python onDecember 13, 2017

想当初,考研的时候要是知道有这么个好东西,计算定积分。。。开玩笑,那时候计算定积分根本没有这么简单的。但这确实给我打开了一种思路,用编程语言去解决更多更复杂的数学问题。下面进入正题。

python编程通过蒙特卡洛法计算定积分详解

如上图所示,计算区间[a b]上f(x)的积分即求曲线与X轴围成红色区域的面积。下面使用蒙特卡洛法计算区间[2 3]上的定积分:∫(x2+4*x*sin(x))dx

# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt

def f(x):
  return x**2 + 4*x*np.sin(x) 
def intf(x): 
  return x**3/3.0+4.0*np.sin(x) - 4.0*x*np.cos(x)
a = 2;  
b = 3; 
# use N draws 
N= 10000
X = np.random.uniform(low=a, high=b, size=N) # N values uniformly drawn from a to b 
Y =f(X)  # CALCULATE THE f(x) 
# 蒙特卡洛法计算定积分:面积=宽度*平均高度
Imc= (b-a) * np.sum(Y)/ N;
exactval=intf(b)-intf(a)
print "Monte Carlo estimation=",Imc, "Exact number=", intf(b)-intf(a)
# --How does the accuracy depends on the number of points(samples)? Lets try the same 1-D integral 
# The Monte Carlo methods yield approximate answers whose accuracy depends on the number of draws.
Imc=np.zeros(1000)
Na = np.linspace(0,1000,1000)
exactval= intf(b)-intf(a)
for N in np.arange(0,1000):
  X = np.random.uniform(low=a, high=b, size=N) # N values uniformly drawn from a to b 
  Y =f(X)  # CALCULATE THE f(x) 
  Imc[N]= (b-a) * np.sum(Y)/ N;   
plt.plot(Na[10:],np.sqrt((Imc[10:]-exactval)**2), alpha=0.7)
plt.plot(Na[10:], 1/np.sqrt(Na[10:]), 'r')
plt.xlabel("N")
plt.ylabel("sqrt((Imc-ExactValue)$^2$)")
plt.show()

>>>

Monte Carlo estimation= 11.8181144118 Exact number= 11.8113589251

python编程通过蒙特卡洛法计算定积分详解

从上图可以看出,随着采样点数的增加,计算误差逐渐减小。想要提高模拟结果的精确度有两个途径:其一是增加试验次数N;其二是降低方差σ2. 增加试验次数势必使解题所用计算机的总时间增加,要想以此来达到提高精度之目的显然是不合适的。下面来介绍重要抽样法来减小方差,提高积分计算的精度。

重要性抽样法的特点在于,它不是从给定的过程的概率分布抽样,而是从修改的概率分布抽样,使对模拟结果有重要作用的事件更多出现,从而提高抽样效率,减少花费在对模拟结果无关紧要的事件上的计算时间。比如在区间[a b]上求g(x)的积分,若采用均匀抽样,在函数值g(x)比较小的区间内产生的抽样点跟函数值较大处区间内产生的抽样点的数目接近,显然抽样效率不高,可以将抽样概率密度函数改为f(x),使f(x)与g(x)的形状相近,就可以保证对积分计算贡献较大的抽样值出现的机会大于贡献小的抽样值,即可以将积分运算改写为:

python编程通过蒙特卡洛法计算定积分详解

x是按照概率密度f(x)抽样获得的随机变量,显然在区间[a b]内应该有:

python编程通过蒙特卡洛法计算定积分详解

因此,可容易将积分值I看成是随机变量 Y = g(x)/f(x)的期望,式子中xi是服从概率密度f(x)的采样点

python编程通过蒙特卡洛法计算定积分详解

下面的例子采用一个正态分布函数f(x)来近似g(x)=sin(x)*x,并依据正态分布选取采样值计算区间[0 pi]上的积分个∫g(x)dx

# -*- coding: utf-8 -*-
# Example: Calculate ∫sin(x)xdx

# The function has a shape that is similar to Gaussian and therefore
# we choose here a Gaussian as importance sampling distribution.
from scipy import stats
from scipy.stats import norm
import numpy as np
import matplotlib.pyplot as plt
mu = 2;
sig =.7;
f = lambda x: np.sin(x)*x
infun = lambda x: np.sin(x)-x*np.cos(x)
p = lambda x: (1/np.sqrt(2*np.pi*sig**2))*np.exp(-(x-mu)**2/(2.0*sig**2))
normfun = lambda x: norm.cdf(x-mu, scale=sig)

plt.figure(figsize=(18,8)) # set the figure size
# range of integration
xmax =np.pi 
xmin =0
# Number of draws 
N =1000
# Just want to plot the function
x=np.linspace(xmin, xmax, 1000)
plt.subplot(1,2,1)
plt.plot(x, f(x), 'b', label=u'Original $x\sin(x)$')
plt.plot(x, p(x), 'r', label=u'Importance Sampling Function: Normal')
plt.xlabel('x')
plt.legend()
# =============================================
# EXACT SOLUTION 
# =============================================
Iexact = infun(xmax)-infun(xmin)
print Iexact
# ============================================
# VANILLA MONTE CARLO 
# ============================================
Ivmc = np.zeros(1000)
for k in np.arange(0,1000):
  x = np.random.uniform(low=xmin, high=xmax, size=N)
  Ivmc[k] = (xmax-xmin)*np.mean(f(x))
# ============================================
# IMPORTANCE SAMPLING 
# ============================================
# CHOOSE Gaussian so it similar to the original functions

# Importance sampling: choose the random points so that
# more points are chosen around the peak, less where the integrand is small.
Iis = np.zeros(1000)
for k in np.arange(0,1000):
  # DRAW FROM THE GAUSSIAN: xis~N(mu,sig^2)
  xis = mu + sig*np.random.randn(N,1);
  xis = xis[ (xis<xmax) & (xis>xmin)] ;
  # normalization for gaussian from 0..pi
  normal = normfun(np.pi)-normfun(0)   # 注意:概率密度函数在采样区间[0 pi]上的积分需要等于1
  Iis[k] =np.mean(f(xis)/p(xis))*normal  # 因此,此处需要乘一个系数即p(x)在[0 pi]上的积分
plt.subplot(1,2,2)
plt.hist(Iis,30, histtype='step', label=u'Importance Sampling');
plt.hist(Ivmc, 30, color='r',histtype='step', label=u'Vanilla MC');
plt.vlines(np.pi, 0, 100, color='g', linestyle='dashed')
plt.legend()
plt.show()

python编程通过蒙特卡洛法计算定积分详解

从图中可以看出曲线sin(x)*x的形状和正态分布曲线的形状相近,因此在曲线峰值处的采样点数目会比曲线上位置低的地方要多。精确计算的结果为pi,从上面的右图中可以看出:两种方法均计算定积分1000次,靠近精确值pi=3.1415处的结果最多,离精确值越远数目越少,显然这符合常规。但是采用传统方法(红色直方图)计算出的积分值方的差明显比采用重要抽样法(蓝色直方图)要大。因此,采用重要抽样法计算可以降低方差,提高精度。另外需要注意的是:关于函数f(x)的选择会对计算结果的精度产生影响,当我们选择的函数f(x)与g(x)相差较大时,计算结果的方差也会加大。

总结

以上就是本文关于python编程通过蒙特卡洛法计算定积分详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:

如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

Python 相关文章推荐
python连接mongodb操作数据示例(mongodb数据库配置类)
Dec 31 Python
Python的组合模式与责任链模式编程示例
Feb 02 Python
python中常用的九种预处理方法分享
Sep 11 Python
Python创建二维数组实例(关于list的一个小坑)
Nov 07 Python
简述Python2与Python3的不同点
Jan 21 Python
Python字典中的键映射多个值的方法(列表或者集合)
Oct 17 Python
Python-接口开发入门解析
Aug 01 Python
jenkins配置python脚本定时任务过程图解
Oct 29 Python
复化梯形求积分实例——用Python进行数值计算
Nov 20 Python
Python+OpenCV+图片旋转并用原底色填充新四角的例子
Dec 12 Python
jupyter notebook 重装教程
Apr 16 Python
sklearn和keras的数据切分与交叉验证的实例详解
Jun 19 Python
Python编程产生非均匀随机数的几种方法代码分享
Dec 13 #Python
windows下Virtualenvwrapper安装教程
Dec 13 #Python
python实现机械分词之逆向最大匹配算法代码示例
Dec 13 #Python
Python语言描述KNN算法与Kd树
Dec 13 #Python
Python xlwt设置excel单元格字体及格式
Apr 18 #Python
Python语言实现百度语音识别API的使用实例
Dec 13 #Python
Python通过matplotlib绘制动画简单实例
Dec 13 #Python
You might like
Extended CHM PHP 语法手册之 DIY
2006/10/09 PHP
PHP统计目录下的文件总数及代码行数(去除注释及空行)
2011/01/17 PHP
windows平台中配置nginx+php环境
2015/12/06 PHP
深入理解PHP之OpCode原理详解
2016/06/01 PHP
全面解析PHP操作Memcache基本函数
2016/07/14 PHP
Yii2框架dropDownList下拉菜单用法实例分析
2016/07/18 PHP
Laravel实现ORM带条件搜索分页
2019/10/24 PHP
Thinkphp5框架中引入Markdown编辑器操作示例
2020/06/03 PHP
使用jQuery的ajax功能实现的RSS Reader 代码
2009/09/03 Javascript
JS 动态获取节点代码innerHTML分析 [IE,FF]
2009/11/30 Javascript
基于Jquery的$.cookie()实现跨越页面tabs导航实现代码
2011/03/03 Javascript
js获取location.href的参数实例代码
2013/08/02 Javascript
JS打字效果的动态菜单代码分享
2015/08/21 Javascript
JavaScript判断图片是否已经加载完毕的方法汇总
2016/02/05 Javascript
Vue.js系列之项目结构说明(2)
2017/01/03 Javascript
javascript实现数据双向绑定的三种方式小结
2017/03/09 Javascript
解决vue2.0动态绑定图片src属性值初始化时报错的问题
2018/03/14 Javascript
Vue.js组件高级特性实例详解
2018/12/24 Javascript
JavaScript设计模式之享元模式实例详解
2019/01/17 Javascript
Vue动态创建注册component的实例代码
2019/06/14 Javascript
jquery实现有过渡效果的tab切换
2020/07/17 jQuery
浅谈javascript事件环微任务和宏任务队列原理
2020/09/12 Javascript
vue项目中企业微信使用js-sdk时config和agentConfig配置方式详解
2020/12/15 Vue.js
Python之PyUnit单元测试实例
2014/10/11 Python
python统计cpu利用率的方法
2015/06/02 Python
python制作最美应用的爬虫
2015/10/28 Python
python网络爬虫学习笔记(1)
2018/04/09 Python
Python 实现还原已撤回的微信消息
2019/06/18 Python
Python装饰器用法与知识点小结
2020/03/09 Python
基于python检查SSL证书到期情况代码实例
2020/04/04 Python
Python flask框架实现查询数据库并显示数据
2020/06/04 Python
恶意软件的定义
2014/11/12 面试题
大学校园活动策划书
2014/02/04 职场文书
校车安全责任书
2014/08/25 职场文书
请病假条范文
2015/08/17 职场文书
python 如何获取页面所有a标签下href的值
2021/05/06 Python