python编程通过蒙特卡洛法计算定积分详解


Posted in Python onDecember 13, 2017

想当初,考研的时候要是知道有这么个好东西,计算定积分。。。开玩笑,那时候计算定积分根本没有这么简单的。但这确实给我打开了一种思路,用编程语言去解决更多更复杂的数学问题。下面进入正题。

python编程通过蒙特卡洛法计算定积分详解

如上图所示,计算区间[a b]上f(x)的积分即求曲线与X轴围成红色区域的面积。下面使用蒙特卡洛法计算区间[2 3]上的定积分:∫(x2+4*x*sin(x))dx

# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt

def f(x):
  return x**2 + 4*x*np.sin(x) 
def intf(x): 
  return x**3/3.0+4.0*np.sin(x) - 4.0*x*np.cos(x)
a = 2;  
b = 3; 
# use N draws 
N= 10000
X = np.random.uniform(low=a, high=b, size=N) # N values uniformly drawn from a to b 
Y =f(X)  # CALCULATE THE f(x) 
# 蒙特卡洛法计算定积分:面积=宽度*平均高度
Imc= (b-a) * np.sum(Y)/ N;
exactval=intf(b)-intf(a)
print "Monte Carlo estimation=",Imc, "Exact number=", intf(b)-intf(a)
# --How does the accuracy depends on the number of points(samples)? Lets try the same 1-D integral 
# The Monte Carlo methods yield approximate answers whose accuracy depends on the number of draws.
Imc=np.zeros(1000)
Na = np.linspace(0,1000,1000)
exactval= intf(b)-intf(a)
for N in np.arange(0,1000):
  X = np.random.uniform(low=a, high=b, size=N) # N values uniformly drawn from a to b 
  Y =f(X)  # CALCULATE THE f(x) 
  Imc[N]= (b-a) * np.sum(Y)/ N;   
plt.plot(Na[10:],np.sqrt((Imc[10:]-exactval)**2), alpha=0.7)
plt.plot(Na[10:], 1/np.sqrt(Na[10:]), 'r')
plt.xlabel("N")
plt.ylabel("sqrt((Imc-ExactValue)$^2$)")
plt.show()

>>>

Monte Carlo estimation= 11.8181144118 Exact number= 11.8113589251

python编程通过蒙特卡洛法计算定积分详解

从上图可以看出,随着采样点数的增加,计算误差逐渐减小。想要提高模拟结果的精确度有两个途径:其一是增加试验次数N;其二是降低方差σ2. 增加试验次数势必使解题所用计算机的总时间增加,要想以此来达到提高精度之目的显然是不合适的。下面来介绍重要抽样法来减小方差,提高积分计算的精度。

重要性抽样法的特点在于,它不是从给定的过程的概率分布抽样,而是从修改的概率分布抽样,使对模拟结果有重要作用的事件更多出现,从而提高抽样效率,减少花费在对模拟结果无关紧要的事件上的计算时间。比如在区间[a b]上求g(x)的积分,若采用均匀抽样,在函数值g(x)比较小的区间内产生的抽样点跟函数值较大处区间内产生的抽样点的数目接近,显然抽样效率不高,可以将抽样概率密度函数改为f(x),使f(x)与g(x)的形状相近,就可以保证对积分计算贡献较大的抽样值出现的机会大于贡献小的抽样值,即可以将积分运算改写为:

python编程通过蒙特卡洛法计算定积分详解

x是按照概率密度f(x)抽样获得的随机变量,显然在区间[a b]内应该有:

python编程通过蒙特卡洛法计算定积分详解

因此,可容易将积分值I看成是随机变量 Y = g(x)/f(x)的期望,式子中xi是服从概率密度f(x)的采样点

python编程通过蒙特卡洛法计算定积分详解

下面的例子采用一个正态分布函数f(x)来近似g(x)=sin(x)*x,并依据正态分布选取采样值计算区间[0 pi]上的积分个∫g(x)dx

# -*- coding: utf-8 -*-
# Example: Calculate ∫sin(x)xdx

# The function has a shape that is similar to Gaussian and therefore
# we choose here a Gaussian as importance sampling distribution.
from scipy import stats
from scipy.stats import norm
import numpy as np
import matplotlib.pyplot as plt
mu = 2;
sig =.7;
f = lambda x: np.sin(x)*x
infun = lambda x: np.sin(x)-x*np.cos(x)
p = lambda x: (1/np.sqrt(2*np.pi*sig**2))*np.exp(-(x-mu)**2/(2.0*sig**2))
normfun = lambda x: norm.cdf(x-mu, scale=sig)

plt.figure(figsize=(18,8)) # set the figure size
# range of integration
xmax =np.pi 
xmin =0
# Number of draws 
N =1000
# Just want to plot the function
x=np.linspace(xmin, xmax, 1000)
plt.subplot(1,2,1)
plt.plot(x, f(x), 'b', label=u'Original $x\sin(x)$')
plt.plot(x, p(x), 'r', label=u'Importance Sampling Function: Normal')
plt.xlabel('x')
plt.legend()
# =============================================
# EXACT SOLUTION 
# =============================================
Iexact = infun(xmax)-infun(xmin)
print Iexact
# ============================================
# VANILLA MONTE CARLO 
# ============================================
Ivmc = np.zeros(1000)
for k in np.arange(0,1000):
  x = np.random.uniform(low=xmin, high=xmax, size=N)
  Ivmc[k] = (xmax-xmin)*np.mean(f(x))
# ============================================
# IMPORTANCE SAMPLING 
# ============================================
# CHOOSE Gaussian so it similar to the original functions

# Importance sampling: choose the random points so that
# more points are chosen around the peak, less where the integrand is small.
Iis = np.zeros(1000)
for k in np.arange(0,1000):
  # DRAW FROM THE GAUSSIAN: xis~N(mu,sig^2)
  xis = mu + sig*np.random.randn(N,1);
  xis = xis[ (xis<xmax) & (xis>xmin)] ;
  # normalization for gaussian from 0..pi
  normal = normfun(np.pi)-normfun(0)   # 注意:概率密度函数在采样区间[0 pi]上的积分需要等于1
  Iis[k] =np.mean(f(xis)/p(xis))*normal  # 因此,此处需要乘一个系数即p(x)在[0 pi]上的积分
plt.subplot(1,2,2)
plt.hist(Iis,30, histtype='step', label=u'Importance Sampling');
plt.hist(Ivmc, 30, color='r',histtype='step', label=u'Vanilla MC');
plt.vlines(np.pi, 0, 100, color='g', linestyle='dashed')
plt.legend()
plt.show()

python编程通过蒙特卡洛法计算定积分详解

从图中可以看出曲线sin(x)*x的形状和正态分布曲线的形状相近,因此在曲线峰值处的采样点数目会比曲线上位置低的地方要多。精确计算的结果为pi,从上面的右图中可以看出:两种方法均计算定积分1000次,靠近精确值pi=3.1415处的结果最多,离精确值越远数目越少,显然这符合常规。但是采用传统方法(红色直方图)计算出的积分值方的差明显比采用重要抽样法(蓝色直方图)要大。因此,采用重要抽样法计算可以降低方差,提高精度。另外需要注意的是:关于函数f(x)的选择会对计算结果的精度产生影响,当我们选择的函数f(x)与g(x)相差较大时,计算结果的方差也会加大。

总结

以上就是本文关于python编程通过蒙特卡洛法计算定积分详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:

如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

Python 相关文章推荐
python使用Queue在多个子进程间交换数据的方法
Apr 18 Python
python利用rsa库做公钥解密的方法教程
Dec 10 Python
Python类的继承、多态及获取对象信息操作详解
Feb 28 Python
使用Pandas的Series方法绘制图像教程
Dec 04 Python
Python统计时间内的并发数代码实例
Dec 28 Python
python:目标检测模型预测准确度计算方式(基于IoU)
Jan 18 Python
python numpy数组中的复制知识解析
Feb 03 Python
基于Python3.6中的OpenCV实现图片色彩空间的转换
Feb 03 Python
python对XML文件的操作实现代码
Mar 27 Python
增大python字体的方法步骤
Jul 05 Python
Django contrib auth authenticate函数源码解析
Nov 12 Python
浅谈怎么给Python添加类型标注
Jun 08 Python
Python编程产生非均匀随机数的几种方法代码分享
Dec 13 #Python
windows下Virtualenvwrapper安装教程
Dec 13 #Python
python实现机械分词之逆向最大匹配算法代码示例
Dec 13 #Python
Python语言描述KNN算法与Kd树
Dec 13 #Python
Python xlwt设置excel单元格字体及格式
Apr 18 #Python
Python语言实现百度语音识别API的使用实例
Dec 13 #Python
Python通过matplotlib绘制动画简单实例
Dec 13 #Python
You might like
PHP初学者最感迷茫的问题小结
2010/03/27 PHP
php session实现多级目录存放实现代码
2016/02/03 PHP
php实现算术验证码功能
2018/12/05 PHP
JavaScript 学习笔记一些小技巧
2010/03/28 Javascript
js查找某元素中的所有图片地址的方法
2014/01/16 Javascript
jQuery实现根据类型自动显示和隐藏表单
2015/03/18 Javascript
JavaScript String 对象常用方法总结
2016/04/28 Javascript
完美解决IE9浏览器出现的对象未定义问题
2016/09/29 Javascript
如何利用JQuery实现从底部回到顶部的功能
2016/12/27 Javascript
js使用generator函数同步执行ajax任务
2017/09/05 Javascript
vue 设置路由的登录权限的方法
2018/07/03 Javascript
AngularJS实现与后台服务器进行交互的示例讲解
2018/08/13 Javascript
layui使用button按钮 点击出现弹层 弹层中加载表单的实例
2019/09/04 Javascript
vue实现下拉菜单树
2020/10/22 Javascript
Python的pycurl包用法简介
2015/11/13 Python
Python3 中把txt数据文件读入到矩阵中的方法
2018/04/27 Python
Django 忘记管理员或忘记管理员密码 重设登录密码的方法
2018/05/30 Python
Python将一个CSV文件里的数据追加到另一个CSV文件的方法
2018/07/04 Python
python中时间转换datetime和pd.to_datetime详析
2019/08/11 Python
python实现sm2和sm4国密(国家商用密码)算法的示例
2020/09/26 Python
html5 迷宫游戏(碰撞检测)实例一
2013/07/25 HTML / CSS
用HTML5的canvas实现一个炫酷时钟效果
2016/05/20 HTML / CSS
印度首选时尚目的地:Reliance Trends
2018/01/17 全球购物
德国价格合理的品牌商品购物网站:averdo
2019/03/21 全球购物
德国富尔达运动鞋店:43einhalb
2020/12/25 全球购物
外包公司软件测试工程师
2014/11/01 面试题
大学三年的自我评价
2013/12/25 职场文书
小学生植树节活动总结
2014/07/04 职场文书
计算机实训报告总结
2014/11/05 职场文书
六年级小学生评语
2014/12/26 职场文书
故宫英文导游词
2015/01/31 职场文书
学习与创新自我评价
2015/03/09 职场文书
人事行政助理岗位职责
2015/04/11 职场文书
销售人员管理制度
2015/08/06 职场文书
会议主持词通用版
2019/04/02 职场文书
六一儿童节致辞稿(3篇)
2019/07/11 职场文书