python编程通过蒙特卡洛法计算定积分详解


Posted in Python onDecember 13, 2017

想当初,考研的时候要是知道有这么个好东西,计算定积分。。。开玩笑,那时候计算定积分根本没有这么简单的。但这确实给我打开了一种思路,用编程语言去解决更多更复杂的数学问题。下面进入正题。

python编程通过蒙特卡洛法计算定积分详解

如上图所示,计算区间[a b]上f(x)的积分即求曲线与X轴围成红色区域的面积。下面使用蒙特卡洛法计算区间[2 3]上的定积分:∫(x2+4*x*sin(x))dx

# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt

def f(x):
  return x**2 + 4*x*np.sin(x) 
def intf(x): 
  return x**3/3.0+4.0*np.sin(x) - 4.0*x*np.cos(x)
a = 2;  
b = 3; 
# use N draws 
N= 10000
X = np.random.uniform(low=a, high=b, size=N) # N values uniformly drawn from a to b 
Y =f(X)  # CALCULATE THE f(x) 
# 蒙特卡洛法计算定积分:面积=宽度*平均高度
Imc= (b-a) * np.sum(Y)/ N;
exactval=intf(b)-intf(a)
print "Monte Carlo estimation=",Imc, "Exact number=", intf(b)-intf(a)
# --How does the accuracy depends on the number of points(samples)? Lets try the same 1-D integral 
# The Monte Carlo methods yield approximate answers whose accuracy depends on the number of draws.
Imc=np.zeros(1000)
Na = np.linspace(0,1000,1000)
exactval= intf(b)-intf(a)
for N in np.arange(0,1000):
  X = np.random.uniform(low=a, high=b, size=N) # N values uniformly drawn from a to b 
  Y =f(X)  # CALCULATE THE f(x) 
  Imc[N]= (b-a) * np.sum(Y)/ N;   
plt.plot(Na[10:],np.sqrt((Imc[10:]-exactval)**2), alpha=0.7)
plt.plot(Na[10:], 1/np.sqrt(Na[10:]), 'r')
plt.xlabel("N")
plt.ylabel("sqrt((Imc-ExactValue)$^2$)")
plt.show()

>>>

Monte Carlo estimation= 11.8181144118 Exact number= 11.8113589251

python编程通过蒙特卡洛法计算定积分详解

从上图可以看出,随着采样点数的增加,计算误差逐渐减小。想要提高模拟结果的精确度有两个途径:其一是增加试验次数N;其二是降低方差σ2. 增加试验次数势必使解题所用计算机的总时间增加,要想以此来达到提高精度之目的显然是不合适的。下面来介绍重要抽样法来减小方差,提高积分计算的精度。

重要性抽样法的特点在于,它不是从给定的过程的概率分布抽样,而是从修改的概率分布抽样,使对模拟结果有重要作用的事件更多出现,从而提高抽样效率,减少花费在对模拟结果无关紧要的事件上的计算时间。比如在区间[a b]上求g(x)的积分,若采用均匀抽样,在函数值g(x)比较小的区间内产生的抽样点跟函数值较大处区间内产生的抽样点的数目接近,显然抽样效率不高,可以将抽样概率密度函数改为f(x),使f(x)与g(x)的形状相近,就可以保证对积分计算贡献较大的抽样值出现的机会大于贡献小的抽样值,即可以将积分运算改写为:

python编程通过蒙特卡洛法计算定积分详解

x是按照概率密度f(x)抽样获得的随机变量,显然在区间[a b]内应该有:

python编程通过蒙特卡洛法计算定积分详解

因此,可容易将积分值I看成是随机变量 Y = g(x)/f(x)的期望,式子中xi是服从概率密度f(x)的采样点

python编程通过蒙特卡洛法计算定积分详解

下面的例子采用一个正态分布函数f(x)来近似g(x)=sin(x)*x,并依据正态分布选取采样值计算区间[0 pi]上的积分个∫g(x)dx

# -*- coding: utf-8 -*-
# Example: Calculate ∫sin(x)xdx

# The function has a shape that is similar to Gaussian and therefore
# we choose here a Gaussian as importance sampling distribution.
from scipy import stats
from scipy.stats import norm
import numpy as np
import matplotlib.pyplot as plt
mu = 2;
sig =.7;
f = lambda x: np.sin(x)*x
infun = lambda x: np.sin(x)-x*np.cos(x)
p = lambda x: (1/np.sqrt(2*np.pi*sig**2))*np.exp(-(x-mu)**2/(2.0*sig**2))
normfun = lambda x: norm.cdf(x-mu, scale=sig)

plt.figure(figsize=(18,8)) # set the figure size
# range of integration
xmax =np.pi 
xmin =0
# Number of draws 
N =1000
# Just want to plot the function
x=np.linspace(xmin, xmax, 1000)
plt.subplot(1,2,1)
plt.plot(x, f(x), 'b', label=u'Original $x\sin(x)$')
plt.plot(x, p(x), 'r', label=u'Importance Sampling Function: Normal')
plt.xlabel('x')
plt.legend()
# =============================================
# EXACT SOLUTION 
# =============================================
Iexact = infun(xmax)-infun(xmin)
print Iexact
# ============================================
# VANILLA MONTE CARLO 
# ============================================
Ivmc = np.zeros(1000)
for k in np.arange(0,1000):
  x = np.random.uniform(low=xmin, high=xmax, size=N)
  Ivmc[k] = (xmax-xmin)*np.mean(f(x))
# ============================================
# IMPORTANCE SAMPLING 
# ============================================
# CHOOSE Gaussian so it similar to the original functions

# Importance sampling: choose the random points so that
# more points are chosen around the peak, less where the integrand is small.
Iis = np.zeros(1000)
for k in np.arange(0,1000):
  # DRAW FROM THE GAUSSIAN: xis~N(mu,sig^2)
  xis = mu + sig*np.random.randn(N,1);
  xis = xis[ (xis<xmax) & (xis>xmin)] ;
  # normalization for gaussian from 0..pi
  normal = normfun(np.pi)-normfun(0)   # 注意:概率密度函数在采样区间[0 pi]上的积分需要等于1
  Iis[k] =np.mean(f(xis)/p(xis))*normal  # 因此,此处需要乘一个系数即p(x)在[0 pi]上的积分
plt.subplot(1,2,2)
plt.hist(Iis,30, histtype='step', label=u'Importance Sampling');
plt.hist(Ivmc, 30, color='r',histtype='step', label=u'Vanilla MC');
plt.vlines(np.pi, 0, 100, color='g', linestyle='dashed')
plt.legend()
plt.show()

python编程通过蒙特卡洛法计算定积分详解

从图中可以看出曲线sin(x)*x的形状和正态分布曲线的形状相近,因此在曲线峰值处的采样点数目会比曲线上位置低的地方要多。精确计算的结果为pi,从上面的右图中可以看出:两种方法均计算定积分1000次,靠近精确值pi=3.1415处的结果最多,离精确值越远数目越少,显然这符合常规。但是采用传统方法(红色直方图)计算出的积分值方的差明显比采用重要抽样法(蓝色直方图)要大。因此,采用重要抽样法计算可以降低方差,提高精度。另外需要注意的是:关于函数f(x)的选择会对计算结果的精度产生影响,当我们选择的函数f(x)与g(x)相差较大时,计算结果的方差也会加大。

总结

以上就是本文关于python编程通过蒙特卡洛法计算定积分详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:

如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

Python 相关文章推荐
Python getopt模块处理命令行选项实例
May 13 Python
python写的一个squid访问日志分析的小程序
Sep 17 Python
Python cx_freeze打包工具处理问题思路及解决办法
Feb 13 Python
简单谈谈Python中的几种常见的数据类型
Feb 10 Python
Python 查看list中是否含有某元素的方法
Jun 27 Python
浅谈python 读excel数值为浮点型的问题
Dec 25 Python
Python设计模式之享元模式原理与用法实例分析
Jan 11 Python
Python实用工具FuckIt.py介绍
Jul 02 Python
python中对二维列表中一维列表的调用方法
Jun 07 Python
Python -m参数原理及使用方法解析
Aug 21 Python
python如何爬取动态网站
Sep 09 Python
安装pyinstaller遇到的各种问题(小结)
Nov 20 Python
Python编程产生非均匀随机数的几种方法代码分享
Dec 13 #Python
windows下Virtualenvwrapper安装教程
Dec 13 #Python
python实现机械分词之逆向最大匹配算法代码示例
Dec 13 #Python
Python语言描述KNN算法与Kd树
Dec 13 #Python
Python xlwt设置excel单元格字体及格式
Apr 18 #Python
Python语言实现百度语音识别API的使用实例
Dec 13 #Python
Python通过matplotlib绘制动画简单实例
Dec 13 #Python
You might like
在Windows中安装Apache2和PHP4的权威指南
2006/10/09 PHP
phpMyAdmin链接MySql错误 个人解决方案
2009/12/28 PHP
使用openssl实现rsa非对称加密算法示例
2014/01/24 PHP
PHP5.5迭代生成器用法实例详解
2016/03/16 PHP
jQuery基础知识filter()和find()实例说明
2010/07/06 Javascript
jquery ui resizable bug解决方法
2010/10/26 Javascript
jquery在IE、FF浏览器的差别详细探讨
2013/04/28 Javascript
FF IE浏览器修改标签透明度的方法
2014/01/27 Javascript
jQuery网页右侧广告跟随滚动代码分享
2020/04/20 Javascript
浅谈几种常用的JS类定义方法
2016/06/08 Javascript
实现easyui的datagrid导出为excel的示例代码
2016/11/10 Javascript
微信开发之调起摄像头、本地展示图片、上传下载图片实例
2016/12/08 Javascript
JavaScript之Date_动力节点Java学院整理
2017/06/28 Javascript
微信小程序 数据绑定及运算的简单实例
2017/09/20 Javascript
vue-rx的初步使用教程
2018/09/21 Javascript
vue调用语音播放的方法
2019/09/27 Javascript
微信小程序 获取手机号 JavaScript解密示例代码详解
2020/05/14 Javascript
jQuery 实现扁平式小清新导航
2020/07/07 jQuery
python安装Scrapy图文教程
2017/08/14 Python
Tensorflow实现卷积神经网络用于人脸关键点识别
2018/03/05 Python
Python中xml和json格式相互转换操作示例
2018/12/05 Python
Django模型中字段属性choice使用说明
2020/03/30 Python
Python CategoricalDtype自定义排序实现原理解析
2020/09/11 Python
医疗保健专业人士购物网站:Scrubs & Beyond
2017/02/08 全球购物
Dr.Jart+美国官网:韩国药妆品牌
2019/01/18 全球购物
北京一家公司的.net开发工程师笔试题
2012/04/17 面试题
DTD的含义以及作用
2014/01/26 面试题
公务员职务工作的自我评价
2013/11/01 职场文书
家长评语大全
2014/01/22 职场文书
护士毕业实习感言
2014/03/05 职场文书
博士毕业生自我鉴定范文
2014/04/13 职场文书
营销总经理岗位职责范本
2014/09/02 职场文书
民族学专业职业生涯规划范文:积跬步以至千里
2014/09/11 职场文书
教师学期个人总结
2015/02/11 职场文书
2015初中团支部工作总结
2015/07/21 职场文书
详细聊聊vue中组件的props属性
2021/11/02 Vue.js