python编程通过蒙特卡洛法计算定积分详解


Posted in Python onDecember 13, 2017

想当初,考研的时候要是知道有这么个好东西,计算定积分。。。开玩笑,那时候计算定积分根本没有这么简单的。但这确实给我打开了一种思路,用编程语言去解决更多更复杂的数学问题。下面进入正题。

python编程通过蒙特卡洛法计算定积分详解

如上图所示,计算区间[a b]上f(x)的积分即求曲线与X轴围成红色区域的面积。下面使用蒙特卡洛法计算区间[2 3]上的定积分:∫(x2+4*x*sin(x))dx

# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt

def f(x):
  return x**2 + 4*x*np.sin(x) 
def intf(x): 
  return x**3/3.0+4.0*np.sin(x) - 4.0*x*np.cos(x)
a = 2;  
b = 3; 
# use N draws 
N= 10000
X = np.random.uniform(low=a, high=b, size=N) # N values uniformly drawn from a to b 
Y =f(X)  # CALCULATE THE f(x) 
# 蒙特卡洛法计算定积分:面积=宽度*平均高度
Imc= (b-a) * np.sum(Y)/ N;
exactval=intf(b)-intf(a)
print "Monte Carlo estimation=",Imc, "Exact number=", intf(b)-intf(a)
# --How does the accuracy depends on the number of points(samples)? Lets try the same 1-D integral 
# The Monte Carlo methods yield approximate answers whose accuracy depends on the number of draws.
Imc=np.zeros(1000)
Na = np.linspace(0,1000,1000)
exactval= intf(b)-intf(a)
for N in np.arange(0,1000):
  X = np.random.uniform(low=a, high=b, size=N) # N values uniformly drawn from a to b 
  Y =f(X)  # CALCULATE THE f(x) 
  Imc[N]= (b-a) * np.sum(Y)/ N;   
plt.plot(Na[10:],np.sqrt((Imc[10:]-exactval)**2), alpha=0.7)
plt.plot(Na[10:], 1/np.sqrt(Na[10:]), 'r')
plt.xlabel("N")
plt.ylabel("sqrt((Imc-ExactValue)$^2$)")
plt.show()

>>>

Monte Carlo estimation= 11.8181144118 Exact number= 11.8113589251

python编程通过蒙特卡洛法计算定积分详解

从上图可以看出,随着采样点数的增加,计算误差逐渐减小。想要提高模拟结果的精确度有两个途径:其一是增加试验次数N;其二是降低方差σ2. 增加试验次数势必使解题所用计算机的总时间增加,要想以此来达到提高精度之目的显然是不合适的。下面来介绍重要抽样法来减小方差,提高积分计算的精度。

重要性抽样法的特点在于,它不是从给定的过程的概率分布抽样,而是从修改的概率分布抽样,使对模拟结果有重要作用的事件更多出现,从而提高抽样效率,减少花费在对模拟结果无关紧要的事件上的计算时间。比如在区间[a b]上求g(x)的积分,若采用均匀抽样,在函数值g(x)比较小的区间内产生的抽样点跟函数值较大处区间内产生的抽样点的数目接近,显然抽样效率不高,可以将抽样概率密度函数改为f(x),使f(x)与g(x)的形状相近,就可以保证对积分计算贡献较大的抽样值出现的机会大于贡献小的抽样值,即可以将积分运算改写为:

python编程通过蒙特卡洛法计算定积分详解

x是按照概率密度f(x)抽样获得的随机变量,显然在区间[a b]内应该有:

python编程通过蒙特卡洛法计算定积分详解

因此,可容易将积分值I看成是随机变量 Y = g(x)/f(x)的期望,式子中xi是服从概率密度f(x)的采样点

python编程通过蒙特卡洛法计算定积分详解

下面的例子采用一个正态分布函数f(x)来近似g(x)=sin(x)*x,并依据正态分布选取采样值计算区间[0 pi]上的积分个∫g(x)dx

# -*- coding: utf-8 -*-
# Example: Calculate ∫sin(x)xdx

# The function has a shape that is similar to Gaussian and therefore
# we choose here a Gaussian as importance sampling distribution.
from scipy import stats
from scipy.stats import norm
import numpy as np
import matplotlib.pyplot as plt
mu = 2;
sig =.7;
f = lambda x: np.sin(x)*x
infun = lambda x: np.sin(x)-x*np.cos(x)
p = lambda x: (1/np.sqrt(2*np.pi*sig**2))*np.exp(-(x-mu)**2/(2.0*sig**2))
normfun = lambda x: norm.cdf(x-mu, scale=sig)

plt.figure(figsize=(18,8)) # set the figure size
# range of integration
xmax =np.pi 
xmin =0
# Number of draws 
N =1000
# Just want to plot the function
x=np.linspace(xmin, xmax, 1000)
plt.subplot(1,2,1)
plt.plot(x, f(x), 'b', label=u'Original $x\sin(x)$')
plt.plot(x, p(x), 'r', label=u'Importance Sampling Function: Normal')
plt.xlabel('x')
plt.legend()
# =============================================
# EXACT SOLUTION 
# =============================================
Iexact = infun(xmax)-infun(xmin)
print Iexact
# ============================================
# VANILLA MONTE CARLO 
# ============================================
Ivmc = np.zeros(1000)
for k in np.arange(0,1000):
  x = np.random.uniform(low=xmin, high=xmax, size=N)
  Ivmc[k] = (xmax-xmin)*np.mean(f(x))
# ============================================
# IMPORTANCE SAMPLING 
# ============================================
# CHOOSE Gaussian so it similar to the original functions

# Importance sampling: choose the random points so that
# more points are chosen around the peak, less where the integrand is small.
Iis = np.zeros(1000)
for k in np.arange(0,1000):
  # DRAW FROM THE GAUSSIAN: xis~N(mu,sig^2)
  xis = mu + sig*np.random.randn(N,1);
  xis = xis[ (xis<xmax) & (xis>xmin)] ;
  # normalization for gaussian from 0..pi
  normal = normfun(np.pi)-normfun(0)   # 注意:概率密度函数在采样区间[0 pi]上的积分需要等于1
  Iis[k] =np.mean(f(xis)/p(xis))*normal  # 因此,此处需要乘一个系数即p(x)在[0 pi]上的积分
plt.subplot(1,2,2)
plt.hist(Iis,30, histtype='step', label=u'Importance Sampling');
plt.hist(Ivmc, 30, color='r',histtype='step', label=u'Vanilla MC');
plt.vlines(np.pi, 0, 100, color='g', linestyle='dashed')
plt.legend()
plt.show()

python编程通过蒙特卡洛法计算定积分详解

从图中可以看出曲线sin(x)*x的形状和正态分布曲线的形状相近,因此在曲线峰值处的采样点数目会比曲线上位置低的地方要多。精确计算的结果为pi,从上面的右图中可以看出:两种方法均计算定积分1000次,靠近精确值pi=3.1415处的结果最多,离精确值越远数目越少,显然这符合常规。但是采用传统方法(红色直方图)计算出的积分值方的差明显比采用重要抽样法(蓝色直方图)要大。因此,采用重要抽样法计算可以降低方差,提高精度。另外需要注意的是:关于函数f(x)的选择会对计算结果的精度产生影响,当我们选择的函数f(x)与g(x)相差较大时,计算结果的方差也会加大。

总结

以上就是本文关于python编程通过蒙特卡洛法计算定积分详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:

如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

Python 相关文章推荐
Python实现扫描局域网活动ip(扫描在线电脑)
Apr 28 Python
python删除特定文件的方法
Jul 30 Python
python获取文件路径、文件名、后缀名的实例
Apr 23 Python
用于业余项目的8个优秀Python库
Sep 21 Python
关于Python核心框架tornado的异步协程的2种方法详解
Aug 28 Python
python中对_init_的理解及实例解析
Oct 11 Python
使用Pyhton 分析酒店针孔摄像头
Mar 04 Python
Python错误的处理方法
Jun 23 Python
python获取系统内存占用信息的实例方法
Jul 17 Python
Python使用pickle进行序列化和反序列化的示例代码
Sep 22 Python
Pandas中DataFrame交换列顺序的方法实现
Dec 14 Python
Python之matplotlib绘制折线图
Apr 13 Python
Python编程产生非均匀随机数的几种方法代码分享
Dec 13 #Python
windows下Virtualenvwrapper安装教程
Dec 13 #Python
python实现机械分词之逆向最大匹配算法代码示例
Dec 13 #Python
Python语言描述KNN算法与Kd树
Dec 13 #Python
Python xlwt设置excel单元格字体及格式
Apr 18 #Python
Python语言实现百度语音识别API的使用实例
Dec 13 #Python
Python通过matplotlib绘制动画简单实例
Dec 13 #Python
You might like
PHP中$_FILES的使用方法及注意事项说明
2014/02/14 PHP
WordPress自定义时间显示格式
2015/03/27 PHP
CI框架支持$_GET的两种实现方法
2016/05/18 PHP
javascript的trim,ltrim,rtrim自定义函数
2008/09/21 Javascript
基于jquery实现的鼠标滑过按钮改变背景图片
2011/07/15 Javascript
jquery学习笔记 用jquery实现无刷新登录
2011/08/08 Javascript
js实现右下角可关闭最小化div(可用于展示推荐内容)
2013/06/24 Javascript
javascript判断chrome浏览器的方法
2014/03/26 Javascript
jquery如何扑捉回车键触发的事件
2014/04/24 Javascript
JQuery 实现在同一页面锚点链接之间的平滑滚动
2014/10/29 Javascript
jquery实现鼠标悬浮停止轮播特效
2020/08/20 Javascript
Nodejs爬虫进阶教程之异步并发控制
2016/02/15 NodeJs
vue编译打包本地查看index文件的方法
2018/02/23 Javascript
浅谈Vue Element中Select下拉框选取值的问题
2018/03/01 Javascript
学习jQuery中的noConflict()用法
2018/09/28 jQuery
微信小程序事件对象中e.target和e.currentTarget的区别详解
2019/05/08 Javascript
10种JavaScript最常见的错误(小结)
2019/06/21 Javascript
js动态获取时间的方法分析
2019/08/02 Javascript
详解json串反转义(消除反斜杠)
2019/08/12 Javascript
js实现星星打分效果
2020/07/05 Javascript
Python实现的拟合二元一次函数功能示例【基于scipy模块】
2018/05/15 Python
详解python异步编程之asyncio(百万并发)
2018/07/07 Python
python之生产者消费者模型实现详解
2019/07/27 Python
分享一个python的aes加密代码
2020/12/22 Python
工程师求职简历的自我评价分享
2013/10/10 职场文书
工程地质勘察专业大学生求职信
2013/10/13 职场文书
小学毕业感言300字
2014/02/19 职场文书
幼儿园爱国卫生月活动总结
2014/06/30 职场文书
我的中国梦演讲稿800字
2014/08/19 职场文书
2014年学校办公室工作总结
2014/12/19 职场文书
幼儿园六一儿童节演讲稿
2015/03/19 职场文书
《折线统计图》教学反思
2016/02/22 职场文书
刚学完怎么用Python实现定时任务,转头就跑去撩妹!
2021/06/05 Python
深入浅出讲解Java8函数式编程
2022/01/18 Java/Android
解决Redis启动警告问题
2022/02/24 Redis
使用Cargo工具高效创建Rust项目
2022/08/14 Javascript