Python多线程、异步+多进程爬虫实现代码


Posted in Python onFebruary 17, 2016

安装Tornado
省事点可以直接用grequests库,下面用的是tornado的异步client。 异步用到了tornado,根据官方文档的例子修改得到一个简单的异步爬虫类。可以参考下最新的文档学习下。
pip install tornado

异步爬虫

#!/usr/bin/env python
# -*- coding:utf-8 -*-

import time
from datetime import timedelta
from tornado import httpclient, gen, ioloop, queues
import traceback


class AsySpider(object):
  """A simple class of asynchronous spider."""
  def __init__(self, urls, concurrency=10, **kwargs):
    urls.reverse()
    self.urls = urls
    self.concurrency = concurrency
    self._q = queues.Queue()
    self._fetching = set()
    self._fetched = set()

  def fetch(self, url, **kwargs):
    fetch = getattr(httpclient.AsyncHTTPClient(), 'fetch')
    return fetch(url, **kwargs)

  def handle_html(self, url, html):
    """handle html page"""
    print(url)

  def handle_response(self, url, response):
    """inherit and rewrite this method"""
    if response.code == 200:
      self.handle_html(url, response.body)

    elif response.code == 599:  # retry
      self._fetching.remove(url)
      self._q.put(url)

  @gen.coroutine
  def get_page(self, url):
    try:
      response = yield self.fetch(url)
      print('######fetched %s' % url)
    except Exception as e:
      print('Exception: %s %s' % (e, url))
      raise gen.Return(e)
    raise gen.Return(response)

  @gen.coroutine
  def _run(self):
    @gen.coroutine
    def fetch_url():
      current_url = yield self._q.get()
      try:
        if current_url in self._fetching:
          return

        print('fetching****** %s' % current_url)
        self._fetching.add(current_url)

        response = yield self.get_page(current_url)
        self.handle_response(current_url, response)  # handle reponse

        self._fetched.add(current_url)

        for i in range(self.concurrency):
          if self.urls:
            yield self._q.put(self.urls.pop())

      finally:
        self._q.task_done()

    @gen.coroutine
    def worker():
      while True:
        yield fetch_url()

    self._q.put(self.urls.pop())  # add first url

    # Start workers, then wait for the work queue to be empty.
    for _ in range(self.concurrency):
      worker()

    yield self._q.join(timeout=timedelta(seconds=300000))
    assert self._fetching == self._fetched

  def run(self):
    io_loop = ioloop.IOLoop.current()
    io_loop.run_sync(self._run)


class MySpider(AsySpider):

  def fetch(self, url, **kwargs):
    """重写父类fetch方法可以添加cookies,headers,timeout等信息"""
    cookies_str = "PHPSESSID=j1tt66a829idnms56ppb70jri4; pspt=%7B%22id%22%3A%2233153%22%2C%22pswd%22%3A%228835d2c1351d221b4ab016fbf9e8253f%22%2C%22_code%22%3A%22f779dcd011f4e2581c716d1e1b945861%22%7D; key=%E9%87%8D%E5%BA%86%E5%95%84%E6%9C%A8%E9%B8%9F%E7%BD%91%E7%BB%9C%E7%A7%91%E6%8A%80%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8; think_language=zh-cn; SERVERID=a66d7d08fa1c8b2e37dbdc6ffff82d9e|1444973193|1444967835; CNZZDATA1254842228=1433864393-1442810831-%7C1444972138"  # 从浏览器拷贝cookie字符串
    headers = {
      'User-Agent': 'mozilla/5.0 (compatible; baiduspider/2.0; +http://www.baidu.com/search/spider.html)',
      'cookie': cookies_str
    }
    return super(MySpider, self).fetch(  # 参数参考tornado文档
      url, headers=headers, request_timeout=1
    )

  def handle_html(self, url, html):
    print(url, html)


def main():
  urls = []
  for page in range(1, 100):
    urls.append('http://www.baidu.com?page=%s' % page)
  s = MySpider(urls)
  s.run()


if __name__ == '__main__':
  main()

可以继承这个类,塞一些url进去,然后重写handle_page处理得到的页面。

异步+多进程爬虫
还可以再变态点,加个进程池,使用了multiprocessing模块。效率飕飕的,

#!/usr/bin/env python
# -*- coding:utf-8 -*-

import time
from multiprocessing import Pool
from datetime import timedelta
from tornado import httpclient, gen, ioloop, queues


class AsySpider(object):
  """A simple class of asynchronous spider."""
  def __init__(self, urls, concurrency):
    urls.reverse()
    self.urls = urls
    self.concurrency = concurrency
    self._q = queues.Queue()
    self._fetching = set()
    self._fetched = set()

  def handle_page(self, url, html):
    filename = url.rsplit('/', 1)[1]
    with open(filename, 'w+') as f:
      f.write(html)

  @gen.coroutine
  def get_page(self, url):
    try:
      response = yield httpclient.AsyncHTTPClient().fetch(url)
      print('######fetched %s' % url)
    except Exception as e:
      print('Exception: %s %s' % (e, url))
      raise gen.Return('')
    raise gen.Return(response.body)

  @gen.coroutine
  def _run(self):

    @gen.coroutine
    def fetch_url():
      current_url = yield self._q.get()
      try:
        if current_url in self._fetching:
          return

        print('fetching****** %s' % current_url)
        self._fetching.add(current_url)
        html = yield self.get_page(current_url)
        self._fetched.add(current_url)

        self.handle_page(current_url, html)

        for i in range(self.concurrency):
          if self.urls:
            yield self._q.put(self.urls.pop())

      finally:
        self._q.task_done()

    @gen.coroutine
    def worker():
      while True:
        yield fetch_url()

    self._q.put(self.urls.pop())

    # Start workers, then wait for the work queue to be empty.
    for _ in range(self.concurrency):
      worker()
    yield self._q.join(timeout=timedelta(seconds=300000))
    assert self._fetching == self._fetched

  def run(self):
    io_loop = ioloop.IOLoop.current()
    io_loop.run_sync(self._run)


def run_spider(beg, end):
  urls = []
  for page in range(beg, end):
    urls.append('http://127.0.0.1/%s.htm' % page)
  s = AsySpider(urls, 10)
  s.run()


def main():
  _st = time.time()
  p = Pool()
  all_num = 73000
  num = 4  # number of cpu cores
  per_num, left = divmod(all_num, num)
  s = range(0, all_num, per_num)
  res = []
  for i in range(len(s)-1):
    res.append((s[i], s[i+1]))
  res.append((s[len(s)-1], all_num))
  print res

  for i in res:
    p.apply_async(run_spider, args=(i[0], i[1],))
  p.close()
  p.join()

  print time.time()-_st


if __name__ == '__main__':
  main()

多线程爬虫
线程池实现.

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import Queue
import sys
import requests
import os
import threading
import time

class Worker(threading.Thread):  # 处理工作请求
  def __init__(self, workQueue, resultQueue, **kwds):
    threading.Thread.__init__(self, **kwds)
    self.setDaemon(True)
    self.workQueue = workQueue
    self.resultQueue = resultQueue


  def run(self):
    while 1:
      try:
        callable, args, kwds = self.workQueue.get(False)  # get task
        res = callable(*args, **kwds)
        self.resultQueue.put(res)  # put result
      except Queue.Empty:
        break

class WorkManager:  # 线程池管理,创建
  def __init__(self, num_of_workers=10):
    self.workQueue = Queue.Queue()  # 请求队列
    self.resultQueue = Queue.Queue()  # 输出结果的队列
    self.workers = []
    self._recruitThreads(num_of_workers)

  def _recruitThreads(self, num_of_workers):
    for i in range(num_of_workers):
      worker = Worker(self.workQueue, self.resultQueue)  # 创建工作线程
      self.workers.append(worker)  # 加入到线程队列


  def start(self):
    for w in self.workers:
      w.start()

  def wait_for_complete(self):
    while len(self.workers):
      worker = self.workers.pop()  # 从池中取出一个线程处理请求
      worker.join()
      if worker.isAlive() and not self.workQueue.empty():
        self.workers.append(worker)  # 重新加入线程池中
    print 'All jobs were complete.'


  def add_job(self, callable, *args, **kwds):
    self.workQueue.put((callable, args, kwds))  # 向工作队列中加入请求

  def get_result(self, *args, **kwds):
    return self.resultQueue.get(*args, **kwds)


def download_file(url):
  #print 'beg download', url
  requests.get(url).text


def main():
  try:
    num_of_threads = int(sys.argv[1])
  except:
    num_of_threads = 10
  _st = time.time()
  wm = WorkManager(num_of_threads)
  print num_of_threads
  urls = ['http://www.baidu.com'] * 1000
  for i in urls:
    wm.add_job(download_file, i)
  wm.start()
  wm.wait_for_complete()
  print time.time() - _st

if __name__ == '__main__':
  main()

这三种随便一种都有很高的效率,但是这么跑会给网站服务器不小的压力,尤其是小站点,还是有点节操为好。

Python 相关文章推荐
gearman的安装启动及python API使用实例
Jul 08 Python
Python实现的数据结构与算法之双端队列详解
Apr 22 Python
Python Property属性的2种用法
Jun 21 Python
python 链接和操作 memcache方法
Mar 04 Python
Python用sndhdr模块识别音频格式详解
Jan 11 Python
Python3实现带附件的定时发送邮件功能
Dec 22 Python
python实现数独游戏 java简单实现数独游戏
Mar 30 Python
Django 在iframe里跳转顶层url的例子
Aug 21 Python
Django框架下静态模板的继承操作示例
Nov 08 Python
Python partial函数原理及用法解析
Dec 11 Python
记一次python 爬虫爬取深圳租房信息的过程及遇到的问题
Nov 24 Python
python脚本框架webpy模板赋值实现
Nov 20 Python
玩转python爬虫之爬取糗事百科段子
Feb 17 #Python
玩转python爬虫之正则表达式
Feb 17 #Python
玩转python爬虫之URLError异常处理
Feb 17 #Python
玩转python爬虫之cookie使用方法
Feb 17 #Python
Python 爬虫爬取指定博客的所有文章
Feb 17 #Python
Using Django with GAE Python 后台抓取多个网站的页面全文
Feb 17 #Python
python实现RSA加密(解密)算法
Feb 17 #Python
You might like
php file_get_contents函数轻松采集html数据
2010/04/22 PHP
php对csv文件的读取,写入,输出下载操作详解
2013/08/10 PHP
php高清晰度无损图片压缩功能的实现代码
2018/12/09 PHP
jquery下操作HTML控件的实现代码
2010/01/12 Javascript
javascript常用方法、属性集合及NodeList 和 HTMLCollection 的浏览器差异
2010/12/25 Javascript
得到jQuery detach()后节点中的某个值实现代码
2013/02/05 Javascript
Jquery刷新页面背景图片随机变换的实现方法
2013/03/15 Javascript
web网页按比例显示图片实现原理及js代码
2013/08/09 Javascript
javascript中声明函数的方法及调用函数的返回值
2014/07/22 Javascript
jQuery实现折线图的方法
2015/02/28 Javascript
超实用的JavaScript表单代码段
2016/02/26 Javascript
Node.js中路径处理模块path详解
2016/11/14 Javascript
js实现文本上下来回滚动
2017/02/03 Javascript
Vue.js 2.0学习教程之从基础到组件详解
2017/04/24 Javascript
关于angularJs清除浏览器缓存的方法
2017/11/28 Javascript
vue-better-scroll 的使用实例代码详解
2018/12/03 Javascript
解决vue更新路由router-view复用组件内容不刷新的问题
2019/11/04 Javascript
JavaScript HTML DOM 元素 (节点)新增,编辑,删除操作实例分析
2020/03/02 Javascript
浅谈Vue使用Cascader级联选择器数据回显中的坑
2020/10/31 Javascript
基于VUE实现简单的学生信息管理系统
2021/01/13 Vue.js
python实现中文转换url编码的方法
2016/06/14 Python
python中验证码连通域分割的方法详解
2018/06/04 Python
python不到50行代码完成了多张excel合并的实现示例
2020/05/28 Python
Python 字典一个键对应多个值的方法
2020/09/29 Python
matplotlib部件之套索Lasso的使用
2021/02/24 Python
英国在线房屋中介网站:Yopa
2018/01/09 全球购物
Python如何定义一个函数
2015/09/01 面试题
创伤外科专业推荐信范文
2013/11/19 职场文书
大学生党员自我批评
2014/02/14 职场文书
保密普查工作实施方案
2014/02/25 职场文书
售后服务承诺书怎么写
2014/05/21 职场文书
作风建设整改方案
2014/10/27 职场文书
项目经理岗位职责
2015/01/31 职场文书
《春酒》教学反思
2016/02/22 职场文书
Python 实现定积分与二重定积分的操作
2021/05/26 Python
python模拟浏览器 使用selenium进入好友QQ空间并留言
2022/04/12 Python