python机器学习实现oneR算法(以鸢尾data为例)


Posted in Python onMarch 03, 2022

oneR即“一条规则”。oneR算法根据已有的数据中,具有相同特征值的个体最可能属于哪个类别来进行分类。
以鸢尾data为例,该算法实现过程可解读为以下六步:

一、 导包与获取数据

以均值为阈值,将大于或等于阈值的特征标记为1,低于阈值的特征标记为0。

import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
from collections import defaultdict
from operator import itemgetter
import warnings
from sklearn.metrics import classification_report

# 加载内置iris数据,并保存
dataset = load_iris()  
X = dataset.data
y = dataset.target

attribute_means = X.mean(axis=0)  # 得到一个列表,列表元素个数为特征值个数,列表值为每个特征的均值
X_d = np.array(X >= attribute_means, dtype='int')  # 转bool类型

数据到此已获取完毕,接下来将其划分为训练集和测试集。

二、划分为训练集和测试集

使用默认的0.25作为分割比例。即训练集:测试集=3:1。

X_train, X_test, y_train, y_test = train_test_split(X_d, y, random_state=random_state)

数据描述:
本例中共有四个特征,
原数据集有150个样本,分割后训练集有112个数据,测试集有38个数据。
标签一共分为三类,取值可以是0,1,2。

三、定义函数:获取某特征值出现次数最多的类别及错误率

首先遍历特征的每一个取值,对于每一个特征值,统计它在各个类别中出现的次数。
定义一个函数,有以下四个参数:

  • X, y_true即 训练集数据和标签
  • feature是特征的索引值,可以是0,1,2,3。
  • value是特征可以有的取值,这里为0,1。

该函数的意义在于,对于训练集数据,对于某个特征,依次遍历样本在该特征的真实取值,判断其是否等于特征的某个可以有的取值 (即value)(以0为例)。如果判定成功,则在字典class_counts中记录,以三个类别(0,1,2)中该样本对应的类别为键值,表示该类别出现的次数加一。

首先得到的字典(class_counts)形如:
{0: x1, 1.0: x2, 2.0:x3}
其中元素不一定是三个
x1:类别0中,某个特征feature的特征值为value(0或1)出现的次数
x2:类别0中,某个特征feature的特征值为value(0或1)出现的次数
x3:类别0中,某个特征feature的特征值为value(0或1)出现的次数

然后将class_counts按照值的大小排序,取出指定特征的特征值出现次数最多的类别:most_frequent_class。
该规则即为:该特征的该特征值出现在其出现次数最多的类别上是合理的,出现在其它类别上是错误的。

最后计算该规则的错误率:error
错误率具有该特征的个体在除出现次数最多的类别出现的次数,代表分类规则不适用的个体的数量

最后返回待预测的个体类别错误率

def train_feature_value(X, y_true, feature, value):
    class_counts = defaultdict(int)
    for sample, y_t in zip(X, y_true):
        if sample[feature] == value:
            class_counts[y_t] += 1
    sorted_class_counts = sorted(class_counts.items(), key=itemgetter(1), reverse=True) # 降序
    most_frequent_class = sorted_class_counts[0][0]
    error = sum([class_count for class_value, class_count in class_counts.items()
                 if class_value != most_frequent_class])
    return most_frequent_class, error

返回值most_frequent_class是一个字典, error是一个数字

四、定义函数:获取每个特征值下出现次数最多的类别、错误率

def train(X, y_true, feature):
    n_samples, n_features = X.shape
    assert 0 <= feature < n_features
    # 获取样本中某特征所有可能的取值
    values = set(X[:, feature])
    predictors = dict()
    errors = []
    for current_value in values:
        most_frequent_class, error = train_feature_value(X, y_true, feature, current_value)
        predictors[current_value] = most_frequent_class
        errors.append(error)
    total_error = sum(errors)
    return predictors, total_error

因为most_frequent_class是一个字典,所以predictors是一个键为特征可以的取值(0和1),值为字典most_frequent_class的 字典。
total_error是一个数字,为每个特征值下的错误率的和。

五、调用函数,获取最佳特征值

all_predictors = {variable: train(X_train, y_train, variable) for variable in range(X_train.shape[1])}
Errors = {variable: error for variable, (mapping, error) in all_predictors.items()}
# 找到错误率最低的特征
best_variable, best_error = sorted(Errors.items(), key=itemgetter(1))[0]  # 升序
print("The best model is based on feature {0} and has error {1:.2f}".format(best_variable, best_error))
# 找到最佳特征值,创建model模型
model = {'variable': best_variable,
         'predictor': all_predictors[best_variable][0]}
print(model)

python机器学习实现oneR算法(以鸢尾data为例)

根据代码运行结果,最佳特征值是特征2(索引值为2的feature,即第三个特征)。

对于初学者这里的代码逻辑比较复杂,可以对变量进行逐个打印查看,阅读blog学习时要盯准字眼,细品其逻辑。

print(all_predictors)
print(all_predictors[best_variable])
print(all_predictors[best_variable][0])

python机器学习实现oneR算法(以鸢尾data为例)

六、测试算法

定义预测函数,对测试集数据进行预测

def predict(X_test, model):
    variable = model['variable']
    predictor = model['predictor']
    y_predicted = np.array([predictor[int(sample[variable])] for sample in X_test])
    return y_predicted

# 对测试集数据进行预测
y_predicted = predict(X_test, model)
print(y_predicted)

预测结果:

python机器学习实现oneR算法(以鸢尾data为例)

# 统计预测准确率
accuracy = np.mean(y_predicted == y_test) * 100
print("The test accuracy is {:.1f}%".format(accuracy))

python机器学习实现oneR算法(以鸢尾data为例)

根据打印结果,该模型预测的准确率可达65.8%,对于只有一条规则的oneR算法而言,结果是比较良好的。到此便实现了oneR算法的一次完整应用。

最后,还可以使用classification_report()方法,传入测试集的真实值和预测值,打印出模型评估报告。

# 屏蔽警告
warnings.filterwarnings("ignore") 
# 打印模型评估报告
print(classification_report(y_test, y_predicted))  # 参数为测试集的真实数据和预测数据

python机器学习实现oneR算法(以鸢尾data为例)

 到此这篇关于python机器学习实现oneR算法(以鸢尾data为例)的文章就介绍到这了,更多相关python oneR算法内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python脚本实现集群检测和管理功能
Mar 06 Python
Django中cookie的基本使用方法示例
Feb 03 Python
使用django-guardian实现django-admin的行级权限控制的方法
Oct 30 Python
python实现石头剪刀布小游戏
Jan 20 Python
Python实现查找数组中任意第k大的数字算法示例
Jan 23 Python
python爬虫 Pyppeteer使用方法解析
Sep 28 Python
python实现指定ip端口扫描方式
Dec 17 Python
解决Django中checkbox复选框的传值问题
Mar 31 Python
keras的backend 设置 tensorflow,theano操作
Jun 30 Python
用于ETL的Python数据转换工具详解
Jul 21 Python
python matplotlib绘制三维图的示例
Sep 24 Python
Pandas 数据编码的十种方法
Apr 20 Python
详解python的异常捕获
Mar 03 #Python
分享提高 Python 代码的可读性的技巧
Mar 03 #Python
使用python创建股票的时间序列可视化分析
Python Pandas读取Excel日期数据的异常处理方法
pytorch中的torch.nn.Conv2d()函数图文详解
Feb 28 #Python
python3中apply函数和lambda函数的使用详解
Feb 28 #Python
你需要掌握的20个Python常用技巧
Feb 28 #Python
You might like
实用函数4
2007/11/08 PHP
php多维数组去掉重复值示例分享
2014/03/02 PHP
Laravel 4 初级教程之视图、命名空间、路由
2014/10/30 PHP
[原创]php获取数组中键值最大数组项的索引值
2015/03/17 PHP
PHP结合Mysql数据库实现留言板功能
2016/03/04 PHP
《JavaScript高级程序设计》阅读笔记(二) ECMAScript中的原始类型
2012/02/27 Javascript
js实现屏蔽默认快捷键调用自定义事件示例
2013/06/18 Javascript
js获取下拉列表框中的value和text的值示例代码
2014/01/11 Javascript
JS实用的动画弹出层效果实例
2015/05/05 Javascript
jQuery实现checkbox全选的方法
2015/06/10 Javascript
jQuery插件HighCharts实现2D柱状图、折线图的组合多轴图效果示例【附demo源码下载】
2017/03/09 Javascript
React学习笔记之条件渲染(一)
2017/07/02 Javascript
js轮播图的插件化封装详解
2017/07/17 Javascript
jquery select插件异步实时搜索实例代码
2017/10/20 jQuery
vue.js内置组件之keep-alive组件使用
2018/07/10 Javascript
Puppet的一些技巧
2018/09/17 Javascript
Vue实现点击按钮复制文本内容的例子
2019/11/09 Javascript
关于Node.js中频繁修改代码重启服务器的问题
2020/10/15 Javascript
在 Django/Flask 开发服务器上使用 HTTPS
2014/07/03 Python
python脚本实现查找webshell的方法
2014/07/31 Python
Python的消息队列包SnakeMQ使用初探
2016/06/29 Python
Python中使用haystack实现django全文检索搜索引擎功能
2017/08/26 Python
Python实现通过继承覆盖方法示例
2018/07/02 Python
网易有道2017内推编程题 洗牌(python)
2019/06/19 Python
Django Form and ModelForm的区别与使用
2019/12/06 Python
Python计算IV值的示例讲解
2020/02/28 Python
python 进程池pool使用详解
2020/10/15 Python
CSS3中的常用选择器使用示例整理
2016/06/13 HTML / CSS
加利福尼亚州威尼斯的女性奢侈品设计师服装和概念店:Mona Moore
2018/09/13 全球购物
英语演讲稿范文
2014/01/03 职场文书
黄金搭档广告词
2014/03/21 职场文书
网络优化专员求职信
2014/05/04 职场文书
建筑工程造价专业自荐信
2014/07/08 职场文书
2015年幼儿园中班开学寄语
2015/05/27 职场文书
熟背这些句子,让您的英语口语突飞猛进(135句)
2019/09/06 职场文书
mysql sql常用语句大全
2022/06/21 MySQL