手把手教你实现PyTorch的MNIST数据集


Posted in Python onJune 28, 2021

概述

MNIST 包含 0~9 的手写数字, 共有 60000 个训练集和 10000 个测试集. 数据的格式为单通道 28*28 的灰度图.

手把手教你实现PyTorch的MNIST数据集

获取数据

def get_data():
    """获取数据"""

    # 获取测试集
    train = torchvision.datasets.MNIST(root="./data", train=True, download=True,
                                       transform=torchvision.transforms.Compose([
                                           torchvision.transforms.ToTensor(),  # 转换成张量
                                           torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 标准化
                                       ]))
    train_loader = DataLoader(train, batch_size=batch_size)  # 分割测试集

    # 获取测试集
    test = torchvision.datasets.MNIST(root="./data", train=False, download=True,
                                      transform=torchvision.transforms.Compose([
                                          torchvision.transforms.ToTensor(),  # 转换成张量
                                          torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 标准化
                                      ]))
    test_loader = DataLoader(test, batch_size=batch_size)  # 分割训练

    # 返回分割好的训练集和测试集
    return train_loader, test_loader

网络模型

class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()

        # 卷积层
        self.conv1 = torch.nn.Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1))
        self.conv2 = torch.nn.Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1))

        # Dropout层
        self.dropout1 = torch.nn.Dropout(0.25)
        self.dropout2 = torch.nn.Dropout(0.5)

        # 全连接层
        self.fc1 = torch.nn.Linear(9216, 128)
        self.fc2 = torch.nn.Linear(128, 10)

    def forward(self, x):
        """前向传播"""
        
        # [b, 1, 28, 28] => [b, 32, 26, 26]
        out = self.conv1(x)
        out = F.relu(out)
        
        # [b, 32, 26, 26] => [b, 64, 24, 24]
        out = self.conv2(out)
        out = F.relu(out)

        # [b, 64, 24, 24] => [b, 64, 12, 12]
        out = F.max_pool2d(out, 2)
        out = self.dropout1(out)
        
        # [b, 64, 12, 12] => [b, 64 * 12 * 12] => [b, 9216]
        out = torch.flatten(out, 1)
        
        # [b, 9216] => [b, 128]
        out = self.fc1(out)
        out = F.relu(out)

        # [b, 128] => [b, 10]
        out = self.dropout2(out)
        out = self.fc2(out)

        output = F.log_softmax(out, dim=1)

        return output

train 函数

def train(model, epoch, train_loader):
    """训练"""

    # 训练模式
    model.train()

    # 迭代
    for step, (x, y) in enumerate(train_loader):
        # 加速
        if use_cuda:
            model = model.cuda()
            x, y = x.cuda(), y.cuda()

        # 梯度清零
        optimizer.zero_grad()

        output = model(x)

        # 计算损失
        loss = F.nll_loss(output, y)

        # 反向传播
        loss.backward()

        # 更新梯度
        optimizer.step()

        # 打印损失
        if step % 50 == 0:
            print('Epoch: {}, Step {}, Loss: {}'.format(epoch, step, loss))

test 函数

def test(model, test_loader):
    """测试"""
    
    # 测试模式
    model.eval()

    # 存放正确个数
    correct = 0

    with torch.no_grad():
        for x, y in test_loader:

            # 加速
            if use_cuda:
                model = model.cuda()
                x, y = x.cuda(), y.cuda()

            # 获取结果
            output = model(x)

            # 预测结果
            pred = output.argmax(dim=1, keepdim=True)

            # 计算准确个数
            correct += pred.eq(y.view_as(pred)).sum().item()

    # 计算准确率
    accuracy = correct / len(test_loader.dataset) * 100

    # 输出准确
    print("Test Accuracy: {}%".format(accuracy))

main 函数

def main():
    # 获取数据
    train_loader, test_loader = get_data()
    
    # 迭代
    for epoch in range(iteration_num):
        print("\n================ epoch: {} ================".format(epoch))
        train(network, epoch, train_loader)
        test(network, test_loader)

完整代码:

import torch
import torchvision
import torch.nn.functional as F
from torch.utils.data import DataLoader
class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()

        # 卷积层
        self.conv1 = torch.nn.Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1))
        self.conv2 = torch.nn.Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1))

        # Dropout层
        self.dropout1 = torch.nn.Dropout(0.25)
        self.dropout2 = torch.nn.Dropout(0.5)

        # 全连接层
        self.fc1 = torch.nn.Linear(9216, 128)
        self.fc2 = torch.nn.Linear(128, 10)

    def forward(self, x):
        """前向传播"""
        
        # [b, 1, 28, 28] => [b, 32, 26, 26]
        out = self.conv1(x)
        out = F.relu(out)
        
        # [b, 32, 26, 26] => [b, 64, 24, 24]
        out = self.conv2(out)
        out = F.relu(out)

        # [b, 64, 24, 24] => [b, 64, 12, 12]
        out = F.max_pool2d(out, 2)
        out = self.dropout1(out)
        
        # [b, 64, 12, 12] => [b, 64 * 12 * 12] => [b, 9216]
        out = torch.flatten(out, 1)
        
        # [b, 9216] => [b, 128]
        out = self.fc1(out)
        out = F.relu(out)

        # [b, 128] => [b, 10]
        out = self.dropout2(out)
        out = self.fc2(out)

        output = F.log_softmax(out, dim=1)

        return output


# 定义超参数
batch_size = 64  # 一次训练的样本数目
learning_rate = 0.0001  # 学习率
iteration_num = 5  # 迭代次数
network = Model()  # 实例化网络
print(network)  # 调试输出网络结构
optimizer = torch.optim.Adam(network.parameters(), lr=learning_rate)  # 优化器

# GPU 加速
use_cuda = torch.cuda.is_available()
print("是否使用 GPU 加速:", use_cuda)


def get_data():
    """获取数据"""

    # 获取测试集
    train = torchvision.datasets.MNIST(root="./data", train=True, download=True,
                                       transform=torchvision.transforms.Compose([
                                           torchvision.transforms.ToTensor(),  # 转换成张量
                                           torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 标准化
                                       ]))
    train_loader = DataLoader(train, batch_size=batch_size)  # 分割测试集

    # 获取测试集
    test = torchvision.datasets.MNIST(root="./data", train=False, download=True,
                                      transform=torchvision.transforms.Compose([
                                          torchvision.transforms.ToTensor(),  # 转换成张量
                                          torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 标准化
                                      ]))
    test_loader = DataLoader(test, batch_size=batch_size)  # 分割训练

    # 返回分割好的训练集和测试集
    return train_loader, test_loader


def train(model, epoch, train_loader):
    """训练"""

    # 训练模式
    model.train()

    # 迭代
    for step, (x, y) in enumerate(train_loader):
        # 加速
        if use_cuda:
            model = model.cuda()
            x, y = x.cuda(), y.cuda()

        # 梯度清零
        optimizer.zero_grad()

        output = model(x)

        # 计算损失
        loss = F.nll_loss(output, y)

        # 反向传播
        loss.backward()

        # 更新梯度
        optimizer.step()

        # 打印损失
        if step % 50 == 0:
            print('Epoch: {}, Step {}, Loss: {}'.format(epoch, step, loss))


def test(model, test_loader):
    """测试"""

    # 测试模式
    model.eval()

    # 存放正确个数
    correct = 0

    with torch.no_grad():
        for x, y in test_loader:

            # 加速
            if use_cuda:
                model = model.cuda()
                x, y = x.cuda(), y.cuda()

            # 获取结果
            output = model(x)

            # 预测结果
            pred = output.argmax(dim=1, keepdim=True)

            # 计算准确个数
            correct += pred.eq(y.view_as(pred)).sum().item()

    # 计算准确率
    accuracy = correct / len(test_loader.dataset) * 100

    # 输出准确
    print("Test Accuracy: {}%".format(accuracy))


def main():
    # 获取数据
    train_loader, test_loader = get_data()

    # 迭代
    for epoch in range(iteration_num):
        print("\n================ epoch: {} ================".format(epoch))
        train(network, epoch, train_loader)
        test(network, test_loader)

if __name__ == "__main__":
    main()

输出结果:

Model(
  (conv1): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1))
  (conv2): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1))
  (dropout1): Dropout(p=0.25, inplace=False)
  (dropout2): Dropout(p=0.5, inplace=False)
  (fc1): Linear(in_features=9216, out_features=128, bias=True)
  (fc2): Linear(in_features=128, out_features=10, bias=True)
)
是否使用 GPU 加速: True

================ epoch: 0 ================
Epoch: 0, Step 0, Loss: 2.3131277561187744
Epoch: 0, Step 50, Loss: 1.0419045686721802
Epoch: 0, Step 100, Loss: 0.6259541511535645
Epoch: 0, Step 150, Loss: 0.7194482684135437
Epoch: 0, Step 200, Loss: 0.4020516574382782
Epoch: 0, Step 250, Loss: 0.6890509128570557
Epoch: 0, Step 300, Loss: 0.28660136461257935
Epoch: 0, Step 350, Loss: 0.3277580738067627
Epoch: 0, Step 400, Loss: 0.2750288248062134
Epoch: 0, Step 450, Loss: 0.28428223729133606
Epoch: 0, Step 500, Loss: 0.3514065444469452
Epoch: 0, Step 550, Loss: 0.23386947810649872
Epoch: 0, Step 600, Loss: 0.25338059663772583
Epoch: 0, Step 650, Loss: 0.1743898093700409
Epoch: 0, Step 700, Loss: 0.35752204060554504
Epoch: 0, Step 750, Loss: 0.17575909197330475
Epoch: 0, Step 800, Loss: 0.20604261755943298
Epoch: 0, Step 850, Loss: 0.17389622330665588
Epoch: 0, Step 900, Loss: 0.3188241124153137
Test Accuracy: 96.56%

================ epoch: 1 ================
Epoch: 1, Step 0, Loss: 0.23558208346366882
Epoch: 1, Step 50, Loss: 0.13511177897453308
Epoch: 1, Step 100, Loss: 0.18823786079883575
Epoch: 1, Step 150, Loss: 0.2644936144351959
Epoch: 1, Step 200, Loss: 0.145077645778656
Epoch: 1, Step 250, Loss: 0.30574971437454224
Epoch: 1, Step 300, Loss: 0.2386859953403473
Epoch: 1, Step 350, Loss: 0.08346735686063766
Epoch: 1, Step 400, Loss: 0.10480977594852448
Epoch: 1, Step 450, Loss: 0.07280707359313965
Epoch: 1, Step 500, Loss: 0.20928426086902618
Epoch: 1, Step 550, Loss: 0.20455852150917053
Epoch: 1, Step 600, Loss: 0.10085935145616531
Epoch: 1, Step 650, Loss: 0.13476189970970154
Epoch: 1, Step 700, Loss: 0.19087043404579163
Epoch: 1, Step 750, Loss: 0.0981522724032402
Epoch: 1, Step 800, Loss: 0.1961515098810196
Epoch: 1, Step 850, Loss: 0.041140712797641754
Epoch: 1, Step 900, Loss: 0.250461220741272
Test Accuracy: 98.03%

================ epoch: 2 ================
Epoch: 2, Step 0, Loss: 0.09572553634643555
Epoch: 2, Step 50, Loss: 0.10370486229658127
Epoch: 2, Step 100, Loss: 0.17737184464931488
Epoch: 2, Step 150, Loss: 0.1570713371038437
Epoch: 2, Step 200, Loss: 0.07462178170681
Epoch: 2, Step 250, Loss: 0.18744900822639465
Epoch: 2, Step 300, Loss: 0.09910508990287781
Epoch: 2, Step 350, Loss: 0.08929706364870071
Epoch: 2, Step 400, Loss: 0.07703761011362076
Epoch: 2, Step 450, Loss: 0.10133732110261917
Epoch: 2, Step 500, Loss: 0.1314031481742859
Epoch: 2, Step 550, Loss: 0.10394387692213058
Epoch: 2, Step 600, Loss: 0.11612939089536667
Epoch: 2, Step 650, Loss: 0.17494803667068481
Epoch: 2, Step 700, Loss: 0.11065669357776642
Epoch: 2, Step 750, Loss: 0.061209067702293396
Epoch: 2, Step 800, Loss: 0.14715790748596191
Epoch: 2, Step 850, Loss: 0.03930797800421715
Epoch: 2, Step 900, Loss: 0.18030673265457153
Test Accuracy: 98.46000000000001%

================ epoch: 3 ================
Epoch: 3, Step 0, Loss: 0.09266342222690582
Epoch: 3, Step 50, Loss: 0.0414913073182106
Epoch: 3, Step 100, Loss: 0.2152961939573288
Epoch: 3, Step 150, Loss: 0.12287424504756927
Epoch: 3, Step 200, Loss: 0.13468700647354126
Epoch: 3, Step 250, Loss: 0.11967387050390244
Epoch: 3, Step 300, Loss: 0.11301510035991669
Epoch: 3, Step 350, Loss: 0.037447575479745865
Epoch: 3, Step 400, Loss: 0.04699449613690376
Epoch: 3, Step 450, Loss: 0.05472381412982941
Epoch: 3, Step 500, Loss: 0.09839300811290741
Epoch: 3, Step 550, Loss: 0.07964356243610382
Epoch: 3, Step 600, Loss: 0.08182843774557114
Epoch: 3, Step 650, Loss: 0.05514759197831154
Epoch: 3, Step 700, Loss: 0.13785190880298615
Epoch: 3, Step 750, Loss: 0.062480345368385315
Epoch: 3, Step 800, Loss: 0.120387002825737
Epoch: 3, Step 850, Loss: 0.04458726942539215
Epoch: 3, Step 900, Loss: 0.17119190096855164
Test Accuracy: 98.55000000000001%

================ epoch: 4 ================
Epoch: 4, Step 0, Loss: 0.08094145357608795
Epoch: 4, Step 50, Loss: 0.05615215748548508
Epoch: 4, Step 100, Loss: 0.07766406238079071
Epoch: 4, Step 150, Loss: 0.07915271818637848
Epoch: 4, Step 200, Loss: 0.1301635503768921
Epoch: 4, Step 250, Loss: 0.12118984013795853
Epoch: 4, Step 300, Loss: 0.073218435049057
Epoch: 4, Step 350, Loss: 0.04517696052789688
Epoch: 4, Step 400, Loss: 0.08493026345968246
Epoch: 4, Step 450, Loss: 0.03904269263148308
Epoch: 4, Step 500, Loss: 0.09386837482452393
Epoch: 4, Step 550, Loss: 0.12583576142787933
Epoch: 4, Step 600, Loss: 0.09053893387317657
Epoch: 4, Step 650, Loss: 0.06912104040384293
Epoch: 4, Step 700, Loss: 0.1502612829208374
Epoch: 4, Step 750, Loss: 0.07162325084209442
Epoch: 4, Step 800, Loss: 0.10512275993824005
Epoch: 4, Step 850, Loss: 0.028180215507745743
Epoch: 4, Step 900, Loss: 0.08492615073919296
Test Accuracy: 98.69%

到此这篇关于手把手教你实现PyTorch的MNIST数据集的文章就介绍到这了,更多相关PyTorch MNIST数据集内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python列表append和+的区别浅析
Feb 02 Python
Python中实现从目录中过滤出指定文件类型的文件
Feb 02 Python
python妙用之编码的转换详解
Apr 21 Python
Python读取Json字典写入Excel表格的方法
Jan 03 Python
理论讲解python多进程并发编程
Feb 09 Python
python如何实现反向迭代
Mar 20 Python
python按行读取文件,去掉每行的换行符\n的实例
Apr 19 Python
python实现维吉尼亚算法
Mar 20 Python
PyTorch使用cpu加载模型运算方式
Jan 13 Python
浅谈对python中if、elif、else的误解
Aug 20 Python
Python基于爬虫实现全网搜索并下载音乐
Feb 14 Python
Python的代理类实现,控制访问和修改属性的权限你都了解吗
Mar 21 Python
PyMongo 查询数据的实现
Jun 28 #Python
浅谈哪个Python库才最适合做数据可视化
总结Python变量的相关知识
详解非极大值抑制算法之Python实现
Python实现生活常识解答机器人
Python办公自动化之教你如何用Python将任意文件转为PDF格式
Python移位密码、仿射变换解密实例代码
You might like
破解图片防盗链的代码(asp/php)测试通过
2010/07/02 PHP
PHP入门教程之正则表达式基本用法实例详解(正则匹配,搜索,分割等)
2016/09/11 PHP
Yii框架中jquery表单验证插件用法示例
2016/10/18 PHP
PHP多种序列化/反序列化的方法详解
2017/06/23 PHP
java与javascript之间json格式数据互转介绍
2013/10/29 Javascript
JavaScript 实现鼠标拖动元素实例代码
2014/02/24 Javascript
JS判断字符串长度的5个方法(区分中文和英文)
2014/03/18 Javascript
让html页面不缓存js的实现方法
2014/10/31 Javascript
JQuery实现防止退格键返回的方法
2015/02/12 Javascript
JavaScript设置表单上传时文件个数的方法
2015/08/11 Javascript
JS+CSS实现类似QQ好友及黑名单效果的树型菜单
2015/09/22 Javascript
初步了解javascript面向对象
2015/11/09 Javascript
微信小程序 仿美团分类菜单 swiper分类菜单
2017/04/12 Javascript
JavaScript输出所选择起始与结束日期的方法
2017/07/12 Javascript
js中apply与call简单用法详解
2017/11/06 Javascript
ES6中数组array新增方法实例总结
2017/11/07 Javascript
Vue微信公众号网页分享的示例代码
2020/05/28 Javascript
vue-路由精讲 二级路由和三级路由的作用
2020/08/06 Javascript
解决vue加scoped后就无法修改vant的UI组件的样式问题
2020/09/07 Javascript
vue打开新窗口并实现传参的图文实例
2021/03/04 Vue.js
Python中的is和id用法分析
2015/01/26 Python
Python脚本实现下载合并SAE日志
2015/02/10 Python
Python随手笔记第一篇(2)之初识列表和元组
2016/01/23 Python
python实现域名系统(DNS)正向查询的方法
2016/04/19 Python
浅谈python类属性的访问、设置和删除方法
2016/07/25 Python
对python使用telnet实现弱密码登录的方法详解
2019/01/26 Python
Django使用 Bootstrap 样式修改书籍列表过程解析
2019/08/09 Python
Python 实现3种回归模型(Linear Regression,Lasso,Ridge)的示例
2020/10/15 Python
加强干部作风建设整改方案
2014/10/24 职场文书
公司开会通知
2015/04/20 职场文书
中学生勤俭节约倡议书
2015/04/29 职场文书
感恩主题班会教案
2015/08/12 职场文书
2016社区平安家庭事迹材料
2016/02/26 职场文书
2016年度先进班组事迹材料
2016/03/01 职场文书
浅谈redis的过期时间设置和过期删除机制
2022/03/18 MySQL
Python Matplotlib绘制动画的代码详解
2022/05/30 Python