利用python实现平稳时间序列的建模方式


Posted in Python onJune 03, 2020

一、平稳序列建模步骤

假如某个观察值序列通过序列预处理可以判定为平稳非白噪声序列,就可以利用ARMA模型对该序列进行建模。建模的基本步骤如下:

(1)求出该观察值序列的样本自相关系数(ACF)和样本偏自相关系数(PACF)的值。

(2)根据样本自相关系数和偏自相关系数的性质,选择适当的ARMA(p,q)模型进行拟合。

(3)估计模型中位置参数的值。

(4)检验模型的有效性。如果模型不通过检验,转向步骤(2),重新选择模型再拟合。

(5)模型优化。如果拟合模型通过检验,仍然转向不走(2),充分考虑各种情况,建立多个拟合模型,从所有通过检验的拟合模型中选择最优模型。

(6)利用拟合模型,预测序列的将来走势。

二、代码实现

1、绘制时序图,查看数据的大概分布

trainSeting.head()
Out[36]: 
date
2017-10-01 126.4
2017-10-02  82.4
2017-10-03  78.1
2017-10-04  51.1
2017-10-05  90.9
Name: sales, dtype: float64

plt.plot(trainSeting)

利用python实现平稳时间序列的建模方式

2、平稳性检验

'''进行ADF检验
adf_test的返回值
Test statistic:代表检验统计量
p-value:代表p值检验的概率
Lags used:使用的滞后k,autolag=AIC时会自动选择滞后
Number of Observations Used:样本数量
Critical Value(5%) : 显著性水平为5%的临界值。
(1)假设是存在单位根,即不平稳;
(2)显著性水平,1%:严格拒绝原假设;5%:拒绝原假设,10%类推。
(3)看P值和显著性水平a的大小,p值越小,小于显著性水平的话,就拒绝原假设,认为序列是平稳的;大于的话,不能拒绝,认为是不平稳的
(4)看检验统计量和临界值,检验统计量小于临界值的话,就拒绝原假设,认为序列是平稳的;大于的话,不能拒绝,认为是不平稳的
'''
#滚动统计
def rolling_statistics(timeseries):
 #Determing rolling statistics
 rolmean = pd.rolling_mean(timeseries, window=12)
 rolstd = pd.rolling_std(timeseries, window=12)
 
 #Plot rolling statistics:
 orig = plt.plot(timeseries, color='blue',label='Original')
 mean = plt.plot(rolmean, color='red', label='Rolling Mean')
 std = plt.plot(rolstd, color='black', label = 'Rolling Std')
 plt.legend(loc='best')
 plt.title('Rolling Mean & Standard Deviation')
 plt.show(block=False)
 
##ADF检验
from statsmodels.tsa.stattools import adfuller
def adf_test(timeseries):
 rolling_statistics(timeseries)#绘图
 print ('Results of Augment Dickey-Fuller Test:')
 dftest = adfuller(timeseries, autolag='AIC')
 dfoutput = pd.Series(dftest[0:4], index=['Test Statistic','p-value','#Lags Used','Number of Observations Used'])
 for key,value in dftest[4].items():
  dfoutput['Critical Value (%s)'%key] = value #增加后面的显著性水平的临界值
 print (dfoutput)
 
adf_test(trainSeting) #从结果中可以看到p值为0.1097>0.1,不能拒绝H0,认为该序列不是平稳序列

返回结果如下

利用python实现平稳时间序列的建模方式

Results of Augment Dickey-Fuller Test:
Test Statistic    -5.718539e+00
p-value      7.028398e-07
#Lags Used      0.000000e+00
Number of Observations Used 6.200000e+01
Critical Value (1%)   -3.540523e+00
Critical Value (5%)   -2.909427e+00
Critical Value (10%)   -2.592314e+00
dtype: float64

通过上面可以看到,p值小于0.05,可以认为该序列为平稳时间序列。

3、白噪声检验

'''acorr_ljungbox(x, lags=None, boxpierce=False)函数检验无自相关
lags为延迟期数,如果为整数,则是包含在内的延迟期数,如果是一个列表或数组,那么所有时滞都包含在列表中最大的时滞中
boxpierce为True时表示除开返回LB统计量还会返回Box和Pierce的Q统计量
返回值:
lbvalue:测试的统计量
pvalue:基于卡方分布的p统计量
bpvalue:((optionsal), float or array) ? test statistic for Box-Pierce test
bppvalue:((optional), float or array) ? p-value based for Box-Pierce test on chi-square distribution
'''
from statsmodels.stats.diagnostic import acorr_ljungbox
def test_stochastic(ts,lag):
 p_value = acorr_ljungbox(ts, lags=lag) #lags可自定义
 return p_value

test_stochastic(trainSeting,[6,12])
Out[62]: (array([13.28395274, 14.89281684]), array([0.03874194, 0.24735042]))

从上面的分析结果中可以看到,延迟6阶的p值为0.03<0.05,因此可以拒绝原假设,认为该序列不是白噪声序列。

4、确定ARMA的阶数

(1)利用自相关图和偏自相关图

####自相关图ACF和偏相关图PACF
import statsmodels.api as sm
def acf_pacf_plot(ts_log_diff):
 sm.graphics.tsa.plot_acf(ts_log_diff,lags=40) #ARIMA,q
 sm.graphics.tsa.plot_pacf(ts_log_diff,lags=40) #ARIMA,p
 
acf_pacf_plot(trainSeting) #查看数据的自相关图和偏自相关图

利用python实现平稳时间序列的建模方式

(2)借助AIC、BIC统计量自动确定

##借助AIC、BIC统计量自动确定
from statsmodels.tsa.arima_model import ARMA
def proper_model(data_ts, maxLag): 
 init_bic = float("inf")
 init_p = 0
 init_q = 0
 init_properModel = None
 for p in np.arange(maxLag):
  for q in np.arange(maxLag):
   model = ARMA(data_ts, order=(p, q))
   try:
    results_ARMA = model.fit(disp=-1, method='css')
   except:
    continue
   bic = results_ARMA.bic
   if bic < init_bic:
    init_p = p
    init_q = q
    init_properModel = results_ARMA
    init_bic = bic
 return init_bic, init_p, init_q, init_properModel
 
proper_model(trainSeting,40)
#在statsmodels包里还有更直接的函数:
import statsmodels.tsa.stattools as st
order = st.arma_order_select_ic(ts_log_diff2,max_ar=5,max_ma=5,ic=['aic', 'bic', 'hqic'])
order.bic_min_order
'''
我们常用的是AIC准则,AIC鼓励数据拟合的优良性但是尽量避免出现过度拟合(Overfitting)的情况。所以优先考虑的模型应是AIC值最小的那一个模型。
为了控制计算量,我们限制AR最大阶不超过5,MA最大阶不超过5。 但是这样带来的坏处是可能为局部最优。
timeseries是待输入的时间序列,是pandas.Series类型,max_ar、max_ma是p、q值的最大备选值。
order.bic_min_order返回以BIC准则确定的阶数,是一个tuple类型

返回值如下:

order.bic_min_order
Out[13]: (1, 0)

5、建模

从上述结果中可以看到,可以选择AR(1)模型

################################模型######################################
# AR模型,q=0
#RSS是残差平方和
# disp为-1代表不输出收敛过程的信息,True代表输出
from statsmodels.tsa.arima_model import ARIMA
model = ARIMA(trainSeting,order=(1,0,0)) #第二个参数代表使用了二阶差分
results_AR = model.fit(disp=-1)
plt.plot(trainSeting)
plt.plot(results_AR.fittedvalues, color='red') #红色线代表预测值
plt.title('RSS:%.4f' % sum((results_AR.fittedvalues-trainSeting)**2))#残差平方和

利用python实现平稳时间序列的建模方式

6、预测未来走势

############################预测未来走势##########################################
# forecast方法会自动进行差分还原,当然仅限于支持的1阶和2阶差分
forecast_n = 12 #预测未来12个天走势
forecast_AR = results_AR.forecast(forecast_n)
forecast_AR = forecast_AR[0]
print (forecast_AR)

print (forecast_ARIMA_log)
[90.49452199 84.05407353 81.92752342 81.22536496 80.99352161 80.91697003

80.89169372 80.88334782 80.88059211 80.87968222 80.87938178 80.87928258]

##将预测的数据和原来的数据绘制在一起,为了实现这一目的,我们需要增加数据索引,使用开源库arrow:
import arrow
def get_date_range(start, limit, level='day',format='YYYY-MM-DD'):
 start = arrow.get(start, format) 
 result=(list(map(lambda dt: dt.format(format) , arrow.Arrow.range(level, start,limit=limit))))
 dateparse2 = lambda dates:pd.datetime.strptime(dates,'%Y-%m-%d')
 return map(dateparse2, result)
 
# 预测从2017-12-03开始,也就是我们训练数据最后一个数据的后一个日期
new_index = get_date_range('2017-12-03', forecast_n)
forecast_ARIMA_log = pd.Series(forecast_AR, copy=True, index=new_index)
print (forecast_ARIMA_log.head())
##绘图如下
plt.plot(trainSeting,label='Original',color='blue')
plt.plot(forecast_ARIMA_log, label='Forcast',color='red')
plt.legend(loc='best')
plt.title('forecast')

利用python实现平稳时间序列的建模方式

以上这篇利用python实现平稳时间序列的建模方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Mac OS X10.9安装的Python2.7升级Python3.3步骤详解
Dec 04 Python
python开启多个子进程并行运行的方法
Apr 18 Python
在Python中使用成员运算符的示例
May 13 Python
使用Python编写简单的画图板程序的示例教程
Dec 08 Python
python实现AES加密与解密
Mar 28 Python
使用Python Pandas处理亿级数据的方法
Jun 24 Python
pip install python 快速安装模块的教程图解
Oct 08 Python
基于python的docx模块处理word和WPS的docx格式文件方式
Feb 13 Python
利用python实现逐步回归
Feb 24 Python
python3格式化字符串 f-string的高级用法(推荐)
Mar 04 Python
Django 解决上传文件时,request.FILES为空的问题
May 20 Python
python简单验证码识别的实现过程
Jun 20 Python
Python ADF 单位根检验 如何查看结果的实现
Jun 03 #Python
基于Python快速处理PDF表格数据
Jun 03 #Python
PIL.Image.open和cv2.imread的比较与相互转换的方法
Jun 03 #Python
Python3创建Django项目的几种方法(3种)
Jun 03 #Python
Django 实现 Websocket 广播、点对点发送消息的代码
Jun 03 #Python
使用python实现时间序列白噪声检验方式
Jun 03 #Python
部署Django到阿里云服务器教程示例
Jun 03 #Python
You might like
smarty的section嵌套循环用法示例
2016/05/28 PHP
PHP 在数组中搜索给定的简单实例 array_search 函数
2016/06/13 PHP
thinkphp3.2实现在线留言提交验证码功能
2017/07/19 PHP
使用YII2框架实现微信公众号中表单提交功能
2017/09/04 PHP
php实现JWT(json web token)鉴权实例详解
2019/11/05 PHP
jQuery源码分析之Event事件分析
2010/06/07 Javascript
将HTMLCollection/NodeList/伪数组转换成数组的实现方法
2011/06/20 Javascript
JS代码判断IE6,IE7,IE8,IE9的函数代码
2013/08/02 Javascript
Vue slot用法(小结)
2018/10/22 Javascript
vue 中 beforeRouteEnter 死循环的问题
2019/04/23 Javascript
Vue中多元素过渡特效的解决方案
2020/02/05 Javascript
Vue中关闭弹窗组件时销毁并隐藏操作
2020/09/01 Javascript
JS指定音频audio在某个时间点进行播放
2020/11/28 Javascript
python使用win32com在百度空间插入html元素示例
2014/02/20 Python
通过数据库向Django模型添加字段的示例
2015/07/21 Python
Python使用设计模式中的责任链模式与迭代器模式的示例
2016/03/02 Python
浅谈python爬虫使用Selenium模拟浏览器行为
2018/02/23 Python
Python常用模块之requests模块用法分析
2019/05/15 Python
python2.7的flask框架之引用js&amp;css等静态文件的实现方法
2019/08/22 Python
基于TensorFlow中自定义梯度的2种方式
2020/02/04 Python
python与c语言的语法有哪些不一样的
2020/09/13 Python
python实现学生信息管理系统(精简版)
2020/11/27 Python
利用CSS3的checked伪类实现OL的隐藏显示的方法
2010/12/18 HTML / CSS
拉斯维加斯酒店、演出、旅游、俱乐部及更多:Vegas.com
2019/02/28 全球购物
大一军训感言
2014/01/09 职场文书
个人简历中自我评价
2014/02/11 职场文书
餐厅执行经理岗位职责范本
2014/02/26 职场文书
小学生学习感言
2014/03/10 职场文书
股权投资意向书
2014/04/01 职场文书
新年团拜会主持词
2014/04/02 职场文书
镇人大副主席民主生活会对照检查材料思想汇报
2014/10/01 职场文书
黄石寨导游词
2015/02/05 职场文书
护士2015年终工作总结
2015/04/29 职场文书
2016优秀教师先进个人事迹材料
2016/02/25 职场文书
详解Go与PHP的语法对比
2021/05/29 PHP
Java实现添加条码或二维码到Word文档
2022/06/01 Java/Android