一小时学会TensorFlow2之基本操作2实例代码


Posted in Python onSeptember 04, 2021

索引操作

一小时学会TensorFlow2之基本操作2实例代码

简单索引

索引 (index) 可以帮助我们快速的找到张量中的特定信息.

例子:

a = tf.reshape(tf.range(12), [2, 2, 3])
print(a)

print(a[0])
print(a[0][0])

输出结果:

tf.Tensor(
[[[ 0 1 2]
[ 3 4 5]]

[[ 6 7 8]
[ 9 10 11]]], shape=(2, 2, 3), dtype=int32)
tf.Tensor(
[[0 1 2]
[3 4 5]], shape=(2, 3), dtype=int32)
tf.Tensor([0 1 2], shape=(3,), dtype=int32)

Numpy 式索引

我们也可以按照 numpy 的写法来操作索引.

例子:

a = tf.reshape(tf.range(12), [2, 2, 3])
print(a)

print(a[0])
print(a[0, 0])

输出结果:

tf.Tensor(
[[[ 0 1 2]
[ 3 4 5]]

[[ 6 7 8]
[ 9 10 11]]], shape=(2, 2, 3), dtype=int32)
tf.Tensor(
[[0 1 2]
[3 4 5]], shape=(2, 3), dtype=int32)
tf.Tensor([0 1 2], shape=(3,), dtype=int32)

使用 : 进行索引

例子:

c = tf.ones([4, 14, 14, 4])
print(c[0, :, :, :].shape)
print(c[0, 1, :, :].shape)

输出结果:

(14, 14, 4)
(14, 4)

tf.gather

我们假设一个有 3 个餐馆, 每个餐馆有 8 种菜系, 128 道菜data: [resturants, cuisines, dishes].

一小时学会TensorFlow2之基本操作2实例代码

例子:

data = tf.zeros([3, 8, 128])

g1 = tf.gather(data, axis=0, indices=[0, 2])
print(g1.shape)

g2 = tf.gather(data, axis=1, indices=[0, 1, 2, 3])
print(g2.shape)

输出结果:

(2, 8, 128)
(3, 4, 128)

tf.gather_nd

例子:

g1 = tf.gather_nd(data, [0])
print(g1.shape)

g2 = tf.gather_nd(data, [0, 1])
print(g2.shape)

g3 = tf.gather_nd(data, [0, 1, 2])
print(g3.shape)

输出结果:

(8, 128)
(128,)
()

tf.boolean_mask

格式:

tf.boolean_mask(
    tensor, mask, axis=None, name='boolean_mask'
)

例子:

data = tf.zeros([3, 8, 128])

b1 = tf.boolean_mask(data, mask=[True, True, False])
print(b1.shape)

b2 = tf.boolean_mask(data, mask=[True, False, True, False, True, False, True, False], axis=1)
print(b2.shape)

输出结果:

(2, 8, 128)
(3, 4, 128)

切片操作

借助切片技术, 我们可以灵活的处理张量对象.

一小时学会TensorFlow2之基本操作2实例代码

简单切片

格式:

tensor[start : end]

其中 start 为开始索引, end 为结束索引 (不包括)

例子:

tf.Tensor([0 1 2], shape=(3,), dtype=int32)
tf.Tensor([9], shape=(1,), dtype=int32)
tf.Tensor([0 1 2 3 4 5 6 7 8], shape=(9,), dtype=int32)

step 切片

格式:

tensor[start : end: step]

例子:

d = tf.range(6)
print(d[::-1])  # 实现倒序
print(d[::2])  # 步长为2

输出结果:

tf.Tensor([5 4 3 2 1 0], shape=(6,), dtype=int32)
tf.Tensor([0 2 4], shape=(3,), dtype=int32)

维度变换

一小时学会TensorFlow2之基本操作2实例代码

tf.reshape

tf.reshape 可以帮助我们进行维度转换.

格式:

tf.reshape(
    tensor, shape, name=None
)

参数:

  • tensor: 传入的张量
  • shape: 张量的形状
  • name: 数据名称

例子:

a = tf.random.normal([3, 8, 128])
print(a.shape)

b = tf.reshape(a, [3, 1024])
print(b.shape)

c = tf.reshape(a, [3, -1])
print(c.shape)

输出结果:

(3, 8, 128)
(3, 1024)
(3, 1024)

tf.transpose

格式:

tf.transpose(
    a, perm=None, conjugate=False, name='transpose'
)

例子:

a = tf.random.normal([4, 3, 2, 1])
print(a.shape)

b = tf.transpose(a)
print(b.shape)

c = tf.transpose(a, perm=[0, 1, 3, 2])
print(c.shape)

输出结果:

(4, 3, 2, 1)
(1, 2, 3, 4)
(4, 3, 1, 2)

tf.expand_dims

格式:

tf.expand_dims(
    input, axis, name=None
)

参数:

  • input: 输入
  • axis: 操作的维度
  • name: 数据名称

例子:

a = tf.random.normal([4, 3, 2, 1])
print(a.shape)

b = tf.expand_dims(a, axis=0)
print(b.shape)

c = tf.expand_dims(a, axis=1)
print(c.shape)

d = tf.expand_dims(a, axis=-1)
print(d.shape)

输出结果:

(4, 3, 2, 1)
(1, 4, 3, 2, 1)
(4, 1, 3, 2, 1)
(4, 3, 2, 1, 1)

tf.squeeze

tf.squeeze 可以帮助我们删去所有维度为1 的维度.

一小时学会TensorFlow2之基本操作2实例代码

格式:

tf.squeeze(
    input, axis=None, name=None
)

参数:

  • input: 输入
  • axis: 操作的维度
  • name: 数据名称

例子:

a = tf.zeros([2, 1, 1, 3, 5])

s1 = tf.squeeze(a)
print(s1.shape)

s2 = tf.squeeze(a, axis=1)
print(s2.shape)

s3 = tf.squeeze(a, axis=2)
print(s3.shape)

输出结果:

(2, 3, 5)
(2, 1, 3, 5)
(2, 1, 3, 5)

Boardcasting

广播机制 (Boardcasting) 是一种张量复制的手段. Boardcasting 可以帮助我们扩张张量的形状但无需实际复制数据.

一小时学会TensorFlow2之基本操作2实例代码

广播机制允许我们在隐式情况下进行填充, 从而使得我们的代码更加简洁, 更有效率地使用内存.

tf.boardcast_to

boardcast_to:

tf.broadcast_to(
    input, shape, name=None
)

参数:

  • input: 输入
  • shape: 数据形状
  • name: 数据名称

例子:

a = tf.broadcast_to(tf.random.normal([4, 1, 1, 1]), [4, 32, 32, 3])
print(a.shape)

b = tf.broadcast_to(tf.zeros([128, 1, 1, 1]), [128, 32, 32, 3])
print(b.shape)

输出结果:

(4, 32, 32, 3)
(128, 32, 32, 3)

tf.tile

格式:

tf.tile(
    input, multiples, name=None
)

参数:

  • input: 输入
  • multiples: 同一纬度上复制的次数
  • name: 数据名称

例子:

a = tf.zeros([4, 1, 1, 1])
print(a.shape)

b = tf.tile(a, [1, 32, 32, 3])
print(b.shape)

输出结果:

(4, 1, 1, 1)
(4, 32, 32, 3)

注: boardcast_to 和 tile 的区别在于 boardcast_to 可以在不复制内存的情况下自动扩张 tensor.

数学运算

一小时学会TensorFlow2之基本操作2实例代码

加减乘除

例子:

# 定义张量
t1 = tf.ones([3, 3])
t2 = tf.fill([3, 3], 3.0)

# 加
add = t1 + t2
print(add)

# 减
minus = t1 - t2
print(minus)

# 乘
multiply = t1 * t2
print(multiply)

# 除
divide = t1 / t2
print(divide)

输出结果:

tf.Tensor(
[[4. 4. 4.]
[4. 4. 4.]
[4. 4. 4.]], shape=(3, 3), dtype=float32)
tf.Tensor(
[[-2. -2. -2.]
[-2. -2. -2.]
[-2. -2. -2.]], shape=(3, 3), dtype=float32)
tf.Tensor(
[[3. 3. 3.]
[3. 3. 3.]
[3. 3. 3.]], shape=(3, 3), dtype=float32)
tf.Tensor(
[[0.33333334 0.33333334 0.33333334]
[0.33333334 0.33333334 0.33333334]
[0.33333334 0.33333334 0.33333334]], shape=(3, 3), dtype=float32)

log & exp

例子:

# log
a = tf.fill([2], 100.0)
print(a)

b = tf.math.log(a)  # 以e为底
print(b)

# exp
c = tf.ones([2])
print(c)

d = tf.exp(c)
print(d)

输出结果:

tf.Tensor([100. 100.], shape=(2,), dtype=float32)
tf.Tensor([4.6051702 4.6051702], shape=(2,), dtype=float32)
tf.Tensor([1. 1.], shape=(2,), dtype=float32)
tf.Tensor([2.7182817 2.7182817], shape=(2,), dtype=float32)

pow & sqrt

例子:

# 定义张量
a = tf.fill([2], 4.0)
print(a)

# pow
b = tf.pow(a, 2)
print(b)

# sqrt
c = tf.sqrt(a, 2)
print(c)

输出结果:

tf.Tensor([4. 4.], shape=(2,), dtype=float32)
tf.Tensor([16. 16.], shape=(2,), dtype=float32)
tf.Tensor([2. 2.], shape=(2,), dtype=float32)

矩阵相乘 @

我们可以使用tf.matmul@来实现矩阵相乘.

一小时学会TensorFlow2之基本操作2实例代码

例子:

# 定义张量
a = tf.fill([2, 2], 2)
b = tf.fill([2, 2], 3)

# matmul
c = tf.matmul(a, b)
print(c)

# @
d = a@b
print(d)

输出结果:

tf.Tensor(
[[12 12]
[12 12]], shape=(2, 2), dtype=int32)
tf.Tensor(
[[12 12]
[12 12]], shape=(2, 2), dtype=int32)

到此这篇关于一小时学会TensorFlow2之基本操作2实例代码的文章就介绍到这了,更多相关TensorFlow2基本操作内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python编程中time模块的一些关键用法解析
Jan 19 Python
Python中int()函数的用法浅析
Oct 17 Python
解决出现Incorrect integer value: '' for column 'id' at row 1的问题
Oct 29 Python
python字典快速保存于读取的方法
Mar 23 Python
python逆序打印各位数字的方法
Jun 25 Python
对python中的argv和argc使用详解
Dec 15 Python
python selenium 弹出框处理的实现
Feb 26 Python
Python脚本操作Excel实现批量替换功能
Nov 20 Python
python 字典访问的三种方法小结
Dec 05 Python
深入分析python 排序
Aug 24 Python
python实现MySQL指定表增量同步数据到clickhouse的脚本
Feb 26 Python
Python中json.dumps()函数的使用解析
May 17 Python
Python torch.flatten()函数案例详解
Aug 30 #Python
Python之基础函数案例详解
Aug 30 #Python
python中使用 unittest.TestCase单元测试的用例详解
Aug 30 #Python
python使用matplotlib绘制图片时x轴的刻度处理
使用Python+OpenCV进行卡类型及16位卡号数字的OCR功能
Aug 30 #Python
OpenCV绘制圆端矩形的示例代码
Aug 30 #Python
python中super()函数的理解与基本使用
You might like
php中的curl_multi系列函数使用例子
2014/07/29 PHP
jQuery代码优化之基本事件
2011/11/01 Javascript
使用闭包对setTimeout进行简单封装避免出错
2013/07/10 Javascript
我用的一些Node.js开发工具、开发包、框架等总结
2014/09/25 Javascript
基于JavaScript实现手机短信按钮倒计时(超简单)
2015/12/30 Javascript
Jquery轮播效果实现过程解析
2016/03/30 Javascript
jQuery中的基本选择器用法学习教程
2016/04/14 Javascript
jQuery版AJAX简易封装代码
2016/09/14 Javascript
javascript 动态脚本添加的简单方法
2016/10/11 Javascript
JS原生带小白点轮播图实例讲解
2017/07/22 Javascript
Django使用多数据库的方法
2017/09/06 Javascript
vue实现条件判断动态绑定样式的方法
2018/09/29 Javascript
浅谈JavaScript面向对象--继承
2019/03/20 Javascript
使用Vue实现移动端左滑删除效果附源码
2019/05/16 Javascript
vue 实现路由跳转时更改页面title
2019/11/05 Javascript
JS函数参数的传递与同名参数实例分析
2020/03/16 Javascript
Python用GET方法上传文件
2015/03/10 Python
用python实现对比两张图片的不同
2018/02/05 Python
python实现俄罗斯方块游戏
2020/03/25 Python
Python求凸包及多边形面积教程
2020/04/12 Python
Python通过Pillow实现图片对比
2020/04/29 Python
Python实现一个简单的毕业生信息管理系统的示例代码
2020/06/08 Python
Django-imagekit的使用详解
2020/07/06 Python
python 使用openpyxl读取excel数据
2021/02/18 Python
详解CSS3 Media Queries中媒体属性的使用
2016/02/29 HTML / CSS
CSS3 @keyframes简单动画实现
2018/02/24 HTML / CSS
英智兴达软件测试笔试题
2016/10/12 面试题
生物制药毕业生自荐信
2013/10/16 职场文书
文秘专业毕业生就业推荐信
2013/11/08 职场文书
年终晚会主持词
2014/03/25 职场文书
学校综治宣传月活动总结
2014/07/02 职场文书
后进基层党组织整改方案
2014/10/25 职场文书
2015年事业单位工作总结
2015/04/27 职场文书
Pytorch中Softmax与LogSigmoid的对比分析
2021/06/05 Python
mysql如何能有效防止删库跑路
2021/10/05 MySQL
python实现会员管理系统
2022/03/18 Python