pytorch Dropout过拟合的操作


Posted in Python onMay 27, 2021

如下所示:

pytorch Dropout过拟合的操作

import torch
from torch.autograd import Variable
import matplotlib.pyplot as plt
torch.manual_seed(1)
N_SAMPLES = 20
N_HIDDEN = 300
# training data
x = torch.unsqueeze(torch.linspace(-1, 1, N_SAMPLES), 1)
y = x + 0.3 * torch.normal(torch.zeros(N_SAMPLES, 1), torch.ones(N_SAMPLES, 1))
x, y = Variable(x), Variable(y)
# test data
test_x = torch.unsqueeze(torch.linspace(-1, 1, N_SAMPLES), 1)
test_y = test_x + 0.3 * torch.normal(torch.zeros(N_SAMPLES, 1), torch.ones(N_SAMPLES, 1))
test_x = Variable(test_x, volatile=True)
test_y = Variable(test_y, volatile=True)
# show data
# plt.scatter(x.data.numpy(), y.data.numpy(), c='magenta', s=50, alpha=0.5, label='train')
# plt.scatter(test_x.data.numpy(), test_y.data.numpy(), c='cyan', s=50, alpha=0.5, label='test')
# plt.legend(loc='upper left')
# plt.ylim((-2.5, 2.5))
# plt.show()
net_overfitting = torch.nn.Sequential(
    torch.nn.Linear(1, N_HIDDEN),
    torch.nn.ReLU(),
    torch.nn.Linear(N_HIDDEN, N_HIDDEN),
    torch.nn.ReLU(),
    torch.nn.Linear(N_HIDDEN, 1),
)
net_dropped = torch.nn.Sequential(
    torch.nn.Linear(1, N_HIDDEN),
    torch.nn.Dropout(0.5),
    torch.nn.ReLU(),
    torch.nn.Linear(N_HIDDEN, N_HIDDEN),
    torch.nn.Dropout(0.5),
    torch.nn.ReLU(),
    torch.nn.Linear(N_HIDDEN, 1),
)
print(net_overfitting)
print(net_dropped)
optimizer_ofit = torch.optim.Adam(
    net_overfitting.parameters(),
    lr = 0.01,
)
optimizer_drop = torch.optim.Adam(
    net_dropped.parameters(),
    lr = 0.01,
)
loss_func = torch.nn.MSELoss()
plt.ion()
for t in range(500):
    pred_ofit = net_overfitting(x)
    pred_drop = net_dropped(x)
    loss_ofit = loss_func(pred_ofit, y)
    loss_drop = loss_func(pred_drop, y)
    optimizer_ofit.zero_grad()
    optimizer_drop.zero_grad()
    loss_ofit.backward()
    loss_drop.backward()
    optimizer_ofit.step()
    optimizer_drop.step()
    if t % 10 == 0:
        net_overfitting.eval()
        net_dropped.eval()
        plt.cla()
        test_pred_ofit = net_overfitting(test_x)
        test_pred_drop = net_dropped(test_x)
        plt.scatter(x.data.numpy(), y.data.numpy(), c='magenta', s=50, alpha=0.3, label='train')
        plt.scatter(test_x.data.numpy(), test_y.data.numpy(), c='cyan', s=50, alpha=0.3, label='test')
        plt.plot(test_x.data.numpy(), test_pred_ofit.data.numpy(), 'r-', lw=3, label='overfitting')
        plt.plot(test_x.data.numpy(), test_pred_drop.data.numpy(), 'b--', lw=3, label='dropout(50%)')
        plt.text(0, -1.2, 'overfitting loss=%.4f' % loss_func(test_pred_ofit, test_y).data[0], fontdict={'size': 20, 'color':  'red'})
        plt.text(0, -1.5, 'dropout loss=%.4f' % loss_func(test_pred_drop, test_y).data[0], fontdict={'size': 20, 'color': 'blue'})
        plt.legend(loc='upper left'); plt.ylim((-2.5, 2.5));plt.pause(0.1)
        net_overfitting.train()
        net_dropped.train()
plt.ioff()
plt.show()

补充:pytorch避免过拟合-dropout丢弃法的实现

对于一个单隐藏层的多层感知机,其中输入个数为4,隐藏单元个数为5,且隐藏单元pytorch Dropout过拟合的操作的计算表达式为:

pytorch Dropout过拟合的操作

pytorch Dropout过拟合的操作

开始实现drop丢弃法避免过拟合

定义dropout函数:

%matplotlib inline
import torch
import torch.nn as nn
import numpy as np
def dropout(X, drop_prob):
    X = X.float()
    assert 0 <= drop_prob <= 1
    keep_prob = 1 - drop_prob
    # 这种情况下把全部元素都丢弃
    if keep_prob == 0:
        return torch.zeros_like(X)
    mask = (torch.rand(X.shape) < keep_prob).float()
    return mask * X / keep_prob

定义模型参数:

num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256
W1 = torch.tensor(np.random.normal(0, 0.01, size=(num_inputs, num_hiddens1)), dtype=torch.float, requires_grad=True)
b1 = torch.zeros(num_hiddens1, requires_grad=True)
W2 = torch.tensor(np.random.normal(0, 0.01, size=(num_hiddens1, num_hiddens2)), dtype=torch.float, requires_grad=True)
b2 = torch.zeros(num_hiddens2, requires_grad=True)
W3 = torch.tensor(np.random.normal(0, 0.01, size=(num_hiddens2, num_outputs)), dtype=torch.float, requires_grad=True)
b3 = torch.zeros(num_outputs, requires_grad=True)
params = [W1, b1, W2, b2, W3, b3]

定义模型将全连接层和激活函数ReLU串起来,并对每个激活函数的输出使用丢弃法。

分别设置各个层的丢弃概率。通常的建议是把靠近输入层的丢弃概率设得小一点。

在这个实验中,我们把第一个隐藏层的丢弃概率设为0.2,把第二个隐藏层的丢弃概率设为0.5。

我们可以通过参数is_training来判断运行模式为训练还是测试,并只在训练模式下使用丢弃法。

drop_prob1, drop_prob2 = 0.2, 0.5
def net(X, is_training=True):
    X = X.view(-1, num_inputs)
    H1 = (torch.matmul(X, W1) + b1).relu()
    if is_training:  # 只在训练模型时使用丢弃法
        H1 = dropout(H1, drop_prob1)  # 在第一层全连接后添加丢弃层
    H2 = (torch.matmul(H1, W2) + b2).relu()
    if is_training:
        H2 = dropout(H2, drop_prob2)  # 在第二层全连接后添加丢弃层
    return torch.matmul(H2, W3) + b3
def evaluate_accuracy(data_iter, net):
    acc_sum, n = 0.0, 0
    for X, y in data_iter:
        if isinstance(net, torch.nn.Module):
            net.eval() # 评估模式, 这会关闭dropout
            acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
            net.train() # 改回训练模式
        else: # 自定义的模型
            if('is_training' in net.__code__.co_varnames): # 如果有is_training这个参数
                # 将is_training设置成False
                acc_sum += (net(X, is_training=False).argmax(dim=1) == y).float().sum().item() 
            else:
                acc_sum += (net(X).argmax(dim=1) == y).float().sum().item() 
        n += y.shape[0]
    return acc_sum / n

训练和测试模型:

num_epochs, lr, batch_size = 5, 100.0, 256
loss = torch.nn.CrossEntropyLoss()
def load_data_fashion_mnist(batch_size, resize=None, root='~/Datasets/FashionMNIST'):
    """Download the fashion mnist dataset and then load into memory."""
    trans = []
    if resize:
        trans.append(torchvision.transforms.Resize(size=resize))
    trans.append(torchvision.transforms.ToTensor())
    
    transform = torchvision.transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(root=root, train=True, download=True, transform=transform)
    mnist_test = torchvision.datasets.FashionMNIST(root=root, train=False, download=True, transform=transform)
    if sys.platform.startswith('win'):
        num_workers = 0  # 0表示不用额外的进程来加速读取数据
    else:
        num_workers = 4
    train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
    test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers)
    return train_iter, test_iter
def train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size,
              params=None, lr=None, optimizer=None):
    for epoch in range(num_epochs):
        train_l_sum, train_acc_sum, n = 0.0, 0.0, 0
        for X, y in train_iter:
            y_hat = net(X)
            l = loss(y_hat, y).sum()
            
            # 梯度清零
            if optimizer is not None:
                optimizer.zero_grad()
            elif params is not None and params[0].grad is not None:
                for param in params:
                    param.grad.data.zero_()
            
            l.backward()
            if optimizer is None:
                sgd(params, lr, batch_size)
            else:
                optimizer.step()  # “softmax回归的简洁实现”一节将用到
            
            
            train_l_sum += l.item()
            train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item()
            n += y.shape[0]
        test_acc = evaluate_accuracy(test_iter, net)
        print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'
              % (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))
train_iter, test_iter = load_data_fashion_mnist(batch_size)
train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, params, lr)

以上为个人经验,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
全面解析Python的While循环语句的使用方法
Oct 13 Python
Bottle框架中的装饰器类和描述符应用详解
Oct 28 Python
详解python上传文件和字符到PHP服务器
Nov 24 Python
Python实现随机生成手机号及正则验证手机号的方法
Apr 25 Python
django的登录注册系统的示例代码
May 14 Python
Python DataFrame设置/更改列表字段/元素类型的方法
Jun 09 Python
python和c语言的主要区别总结
Jul 07 Python
浅谈Python中函数的定义及其调用方法
Jul 19 Python
pytorch掉坑记录:model.eval的作用说明
Jun 23 Python
Python趣味入门教程之循环语句while
Aug 26 Python
使用Pytorch训练two-head网络的操作
May 28 Python
利用Python实现Picgo图床工具
Nov 23 Python
浅谈pytorch中的dropout的概率p
May 27 #Python
让文件路径提取变得更简单的Python Path库
Pytorch中的数据集划分&正则化方法
Pytorch 如何实现常用正则化
PyTorch 实现L2正则化以及Dropout的操作
Python开发之QT解决无边框界面拖动卡屏问题(附带源码)
pytorch 实现在测试的时候启用dropout
You might like
php MsSql server时遇到的中文编码问题
2009/06/11 PHP
php实现网页端验证码功能
2017/07/11 PHP
Yii2.0使用阿里云OSS的SDK上传图片、下载、删除图片示例
2017/09/20 PHP
Javascript 更新 JavaScript 数组的 uniq 方法
2008/01/23 Javascript
jquery的live使用注意事项
2014/02/18 Javascript
node.js中的fs.readFileSync方法使用说明
2014/12/15 Javascript
jQuery中[attribute=value]选择器用法实例
2014/12/31 Javascript
基于jQuery和CSS3制作数字时钟附源码下载(jquery篇)
2015/11/24 Javascript
Js 获取、判断浏览器版本信息的简单方法
2016/08/08 Javascript
js querySelector() 使用方法
2016/12/21 Javascript
ES6中数组array新增方法实例总结
2017/11/07 Javascript
Node Puppeteer图像识别实现百度指数爬虫的示例
2018/02/22 Javascript
小程序scroll-view组件实现滚动的示例代码
2018/09/20 Javascript
用Python编写一个简单的FUSE文件系统的教程
2015/04/02 Python
Python 的类、继承和多态详解
2017/07/16 Python
python实现人民币大写转换
2018/06/20 Python
python中列表的切片与修改知识点总结
2019/07/23 Python
wxpython实现按钮切换界面的方法
2019/11/19 Python
Pytorch 多维数组运算过程的索引处理方式
2019/12/27 Python
python3实现名片管理系统(控制台版)
2020/11/29 Python
html5 touch事件实现页面上下滑动效果【附代码】
2016/03/10 HTML / CSS
HTML5 canvas画矩形时出现边框样式不一致的解决方法
2013/10/14 HTML / CSS
BRASTY捷克:购买香水、化妆品、手袋和手表
2017/07/12 全球购物
美国体育用品商店:Paragon Sports
2017/10/08 全球购物
澳大利亚拥有最好的家具和家居用品在线目的地:Nestz
2019/02/23 全球购物
ghd法国官方网站:英国最受欢迎的美发工具品牌
2019/04/18 全球购物
彪马荷兰官网:PUMA荷兰
2019/05/08 全球购物
Booking.com亚太地区:Booking.com APAC
2020/02/07 全球购物
新闻记者实习自我鉴定
2013/09/19 职场文书
高三毕业评语
2014/12/31 职场文书
2016年教师学习教师法心得体会
2016/01/20 职场文书
九年级语文教学反思
2016/03/03 职场文书
Nginx解决前端访问资源跨域问题的方法详解
2021/03/31 Servers
css背景和边框标签实例详解
2021/05/21 HTML / CSS
Mysql外键约束的创建与删除的使用
2022/03/03 MySQL
windows server2016安装oracle 11g的图文教程
2022/07/15 Servers