Python基于Dlib的人脸识别系统的实现


Posted in Python onFebruary 26, 2020

之前已经介绍过人脸识别的基础概念,以及基于opencv的实现方式,今天,我们使用dlib来提取128维的人脸嵌入,并使用k临近值方法来实现人脸识别。

人脸识别系统的实现流程与之前是一样的,只是这里我们借助了dlib和face_recognition这两个库来实现。face_recognition是对dlib库的包装,使对dlib的使用更方便。所以首先要安装这2个库。

pip3 install dlib
pip3 install face_recognition

然后,还要安装imutils库

pip3 install imutils

我们看一下项目的目录结构:

.
├── dataset
│   ├── alan_grant [22 entries exceeds filelimit, not opening dir]
│   ├── claire_dearing [53 entries exceeds filelimit, not opening dir]
│   ├── ellie_sattler [31 entries exceeds filelimit, not opening dir]
│   ├── ian_malcolm [41 entries exceeds filelimit, not opening dir]
│   ├── john_hammond [36 entries exceeds filelimit, not opening dir]
│   └── owen_grady [35 entries exceeds filelimit, not opening dir]
├── examples
│   ├── example_01.png
│   ├── example_02.png
│   └── example_03.png
├── output
│   ├── lunch_scene_output.avi
│   └── webcam_face_recognition_output.avi
├── videos
│   └── lunch_scene.mp4
├── encode_faces.py
├── encodings.pickle
├── recognize_faces_image.py
├── recognize_faces_video_file.py
├── recognize_faces_video.py
└── search_bing_api.py
 
10 directories, 12 files

首先,提取128维的人脸嵌入:

命令如下:

python3 encode_faces.py --dataset dataset --encodings encodings.pickle -d hog

记住:如果你的电脑内存不够大,请使用hog模型进行人脸检测,如果内存够大,可以使用cnn神经网络进行人脸检测。

看代码:

# USAGE
# python encode_faces.py --dataset dataset --encodings encodings.pickle
 
# import the necessary packages
from imutils import paths
import face_recognition
import argparse
import pickle
import cv2
import os
 
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--dataset", required=True,
	help="path to input directory of faces + images")
ap.add_argument("-e", "--encodings", required=True,
	help="path to serialized db of facial encodings")
ap.add_argument("-d", "--detection-method", type=str, default="hog",
	help="face detection model to use: either `hog` or `cnn`")
args = vars(ap.parse_args())
 
# grab the paths to the input images in our dataset
print("[INFO] quantifying faces...")
imagePaths = list(paths.list_images(args["dataset"]))
 
# initialize the list of known encodings and known names
knownEncodings = []
knownNames = []
 
# loop over the image paths
for (i, imagePath) in enumerate(imagePaths):
	# extract the person name from the image path
	print("[INFO] processing image {}/{}".format(i + 1,
		len(imagePaths)))
	name = imagePath.split(os.path.sep)[-2]
 
	# load the input image and convert it from RGB (OpenCV ordering)
	# to dlib ordering (RGB)
	image = cv2.imread(imagePath)
	rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
 
	# detect the (x, y)-coordinates of the bounding boxes
	# corresponding to each face in the input image
	boxes = face_recognition.face_locations(rgb,
		model=args["detection_method"])
 
	# compute the facial embedding for the face
	encodings = face_recognition.face_encodings(rgb, boxes)
 
	# loop over the encodings
	for encoding in encodings:
		# add each encoding + name to our set of known names and
		# encodings
		knownEncodings.append(encoding)
		knownNames.append(name)
 
# dump the facial encodings + names to disk
print("[INFO] serializing encodings...")
data = {"encodings": knownEncodings, "names": knownNames}
f = open(args["encodings"], "wb")
f.write(pickle.dumps(data))
f.close()

输出结果是每张图片输出一个人脸的128维的向量和对于的名字,并序列化到硬盘,供后续人脸识别使用。

识别图像中的人脸:

这里使用KNN方法实现最终的人脸识别,而不是使用SVM进行训练。

命令如下:

python3 recognize_faces_image.py --encodings encodings.pickle 	--image examples/example_01.png

看代码:

# USAGE
# python recognize_faces_image.py --encodings encodings.pickle --image examples/example_01.png 
 
# import the necessary packages
import face_recognition
import argparse
import pickle
import cv2
 
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-e", "--encodings", required=True,
	help="path to serialized db of facial encodings")
ap.add_argument("-i", "--image", required=True,
	help="path to input image")
ap.add_argument("-d", "--detection-method", type=str, default="cnn",
	help="face detection model to use: either `hog` or `cnn`")
args = vars(ap.parse_args())
 
# load the known faces and embeddings
print("[INFO] loading encodings...")
data = pickle.loads(open(args["encodings"], "rb").read())
 
# load the input image and convert it from BGR to RGB
image = cv2.imread(args["image"])
rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
 
# detect the (x, y)-coordinates of the bounding boxes corresponding
# to each face in the input image, then compute the facial embeddings
# for each face
print("[INFO] recognizing faces...")
boxes = face_recognition.face_locations(rgb,
	model=args["detection_method"])
encodings = face_recognition.face_encodings(rgb, boxes)
 
# initialize the list of names for each face detected
names = []
 
# loop over the facial embeddings
for encoding in encodings:
	# attempt to match each face in the input image to our known
	# encodings
	matches = face_recognition.compare_faces(data["encodings"],
		encoding)
	name = "Unknown"
 
	# check to see if we have found a match
	if True in matches:
		# find the indexes of all matched faces then initialize a
		# dictionary to count the total number of times each face
		# was matched
		matchedIdxs = [i for (i, b) in enumerate(matches) if b]
		counts = {}
 
		# loop over the matched indexes and maintain a count for
		# each recognized face face
		for i in matchedIdxs:
			name = data["names"][i]
			counts[name] = counts.get(name, 0) + 1
 
		# determine the recognized face with the largest number of
		# votes (note: in the event of an unlikely tie Python will
		# select first entry in the dictionary)
		name = max(counts, key=counts.get)
	
	# update the list of names
	names.append(name)
 
# loop over the recognized faces
for ((top, right, bottom, left), name) in zip(boxes, names):
	# draw the predicted face name on the image
	cv2.rectangle(image, (left, top), (right, bottom), (0, 255, 0), 2)
	y = top - 15 if top - 15 > 15 else top + 15
	cv2.putText(image, name, (left, y), cv2.FONT_HERSHEY_SIMPLEX,
		0.75, (0, 255, 0), 2)
 
# show the output image
cv2.imshow("Image", image)
cv2.waitKey(0)

实际效果如下:

Python基于Dlib的人脸识别系统的实现

如果要详细了解细节,请参考:https://www.pyimagesearch.com/2018/06/18/face-recognition-with-opencv-python-and-deep-learning/

到此这篇关于Python基于Dlib的人脸识别系统的实现的文章就介绍到这了,更多相关Python Dlib人脸识别内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python3读取UTF-8文件及统计文件行数的方法
May 22 Python
pymssql数据库操作MSSQL2005实例分析
May 25 Python
详解python使用Nginx和uWSGI来运行Python应用
Jan 09 Python
python实现淘宝秒杀聚划算抢购自动提醒源码
Jun 23 Python
Python检测网络延迟的代码
May 15 Python
python smtplib模块自动收发邮件功能(二)
May 22 Python
numpy使用fromstring创建矩阵的实例
Jun 15 Python
解决使用pycharm提交代码时冲突之后文件丢失找回的方法
Aug 05 Python
python命名空间(namespace)简单介绍
Aug 10 Python
python如何保证输入键入数字的方法
Aug 23 Python
python实现小程序推送页面收录脚本
Apr 20 Python
Django利用elasticsearch(搜索引擎)实现搜索功能
Nov 26 Python
python 回溯法模板详解
Feb 26 #Python
python实现信号时域统计特征提取代码
Feb 26 #Python
Python 基于FIR实现Hilbert滤波器求信号包络详解
Feb 26 #Python
python实现逆滤波与维纳滤波示例
Feb 26 #Python
Python全面分析系统的时域特性和频率域特性
Feb 26 #Python
解决pycharm每次打开项目都需要配置解释器和安装库问题
Feb 26 #Python
Python中os模块功能与用法详解
Feb 26 #Python
You might like
S900/ ETON E1-XM 收音机
2021/03/02 无线电
咖啡知识 咖啡养豆要养多久 排气又是什么
2021/03/06 新手入门
php实例分享之mysql数据备份
2014/05/19 PHP
Zend Framework实现多服务器共享SESSION数据的方法
2016/03/22 PHP
浅谈PHP错误类型及屏蔽方法
2017/05/27 PHP
doctype后如何获得body.clientHeight的方法
2007/07/11 Javascript
IE的有条件注释判定IE版本详解(附实例代码)
2012/01/04 Javascript
jQuery-Tools-overlay 使用介绍
2012/07/14 Javascript
js打开windows上的可执行文件示例
2014/05/27 Javascript
JS中处理时间之setUTCMinutes()方法的使用
2015/06/12 Javascript
js使用cookie记录用户名的方法
2015/11/26 Javascript
轻松学习jQuery插件EasyUI EasyUI创建菜单与按钮
2015/11/30 Javascript
JQuery异步加载PartialView的方法
2016/06/07 Javascript
简单谈谈JS数组中的indexOf方法
2016/10/13 Javascript
vue.js实现表格合并示例代码
2016/11/30 Javascript
node使用UEditor富文本编辑器的方法实例
2017/07/11 Javascript
layui获取多选框中的值方法
2018/08/15 Javascript
JavaScript偏函数与柯里化实例详解
2019/03/27 Javascript
vue点击标签切换选中及互相排斥操作
2020/07/17 Javascript
Python函数返回值实例分析
2015/06/08 Python
为Python的Tornado框架配置使用Jinja2模板引擎的方法
2016/06/30 Python
Python实现的弹球小游戏示例
2017/08/01 Python
Python实现的自定义多线程多进程类示例
2018/03/23 Python
值得收藏,Python 开发中的高级技巧
2018/11/23 Python
python定间隔取点(np.linspace)的实现
2019/11/27 Python
使用pandas的box_plot去除异常值
2019/12/10 Python
python3读取csv文件任意行列代码实例
2020/01/13 Python
Python如何在循环内使用list.remove()
2020/06/01 Python
Python获取excel内容及相关操作代码实例
2020/08/10 Python
python中openpyxl和xlsxwriter对Excel的操作方法
2021/03/01 Python
名词解释WEB SERVICE,SOAP,UDDI,WSDL,JAXP,JAXM;JSWDL开发包的介绍。
2012/10/27 面试题
校园安全标语
2014/06/07 职场文书
甘南现象心得体会
2014/09/11 职场文书
员工自我工作评价
2015/03/06 职场文书
MySQL连接查询你真的学会了吗?
2021/06/02 MySQL
「魔导具师妲莉亚永不妥协~从今天开始的自由职人生活~」1、2卷发售宣传CM公开
2022/03/21 日漫