将数据集制作成VOC数据集格式的实例


Posted in Python onFebruary 17, 2020

在做目标检测任务时,若使用Github已复现的论文时,需首先将自己的数据集转化为VOC数据集的格式,因为论文作者使用的是公开数据集VOC 2007、VOC2012、COCO等类型数据集做方法验证与比对。

一、VOC数据集格式

--VOCdevkit2007

--VOC2007

--Annotations (xml格式的文件)

--000001.xml

--ImageSets

--Layout

--Main

--train.txt

--test.txt

--val.txt

--trainval.txt

--Segmentation

--JPEGImages (训练集和测试集图片)

--000001.jpg

--results

二、转换过程步骤

1. 使用标注工具标注图片目标检测框,生成JSON格式的标注文件(本人使用此生成类型的标注工具,也可使用(LabelImg等标注工具);

2. 批量修改图片和标注文件名称,从000001.jpg、000001.json标号开始;

#coding='utf-8'
import os
import numpy as np
 
def imgs_rename(imgs_path):
  imgs_labels_name = np.array(os.listdir(imgs_path)).reshape(-1,2)
  # 从 000001开始
  i = 1
  for img_label_name in imgs_labels_name:
    if img_label_name[0].endswith('.jpg'):
      # 修改图片名称
      img_old_name = os.path.join(os.path.abspath(imgs_path), img_label_name[0])
      # 类别+图片编号  format(str(i),'0>3s') 填充对齐
      img_new_name = os.path.join(os.path.abspath(imgs_path), '00' + format(str(i),'0>4s') + '.jpg')
      os.rename(img_old_name, img_new_name)
      # 修改json文件名称
      label_old_name = os.path.join(os.path.abspath(imgs_path), img_label_name[1])
      label_new_name = os.path.join(os.path.abspath(imgs_path), '00' + format(str(i), '0>4s') + '.json')
      os.rename(label_old_name, label_new_name)
      i = i + 1
 
if __name__=='__main__':
  # 读取json文件的路径
  root = "read_file_path"
 
  imgs_rename(root)

3. 提取图片和标注文件到不同文件夹下,并将读取的标注框转化为txt文件格式(本人的图片和JSON文件在同一目录下生成);

import json
import os
import numpy as np
import cv2
 
#读取json格式文件,返回坐标
def read_json(file_name):
  file = open(file_name,'r',encoding='utf-8')
  set = json.load(file)
  # print("读取完整信息:",set)
  coord = set['objects'][0]['seg'] # 只读取第一个标注的车牌
  return coord
 
def save_imgs(imgs_jsons_files, imgs_path):
  # 提取图片文件夹中的jpg文件名称
  for idx in range(len(imgs_jsons_list)):
    if imgs_jsons_list[idx][-3:]=='jpg':
      img_name = imgs_jsons_list[idx]
      read_img_path = os.path.join(imgs_jsons_files, img_name)
      img = cv2.imread(read_img_path)
      save_img_path = os.path.join(imgs_path, img_name)
      cv2.imwrite(save_img_path, img)
 
def save_labels(imgs_jsons_files, labels_path):
  # 提取图片文件夹中的json文件名称
  for idx in range(len(imgs_jsons_list)):
    if imgs_jsons_list[idx][-4:] == 'json':
      json_name = imgs_jsons_list[idx]
 
      # 操作每一个json文件,读取并保存坐标
      json_path = os.path.join(imgs_jsons_files, json_name)
      json_coord = read_json(json_path)
      if len(json_coord) > 8:
        print("标注坐标多于四个点的文件名称:", json_name)
 
      # 提取左上和右下坐标
      roi_coord = []
      for idx in range(len(json_coord)):
        if idx == 0 or idx == 1 or idx == 4 or idx == 5:
          roi_coord.extend([json_coord[idx]])
      # 保存roi坐标到txt文件中
      label_path = labels_path + json_name[:6] + '.txt'
      np.savetxt(label_path, roi_coord)
 
if __name__=='__main__':
  print("loading......")
  # 读取jpg json文件的路径
  imgs_jsons_files = "Jpg_json_file_path"
 
  # 保存读取的真实标签路径
  labels_path = "save_labels_path"
  if not os.path.exists(labels_path):
    os.mkdir(labels_path)
  # 保存读取的图片
  imgs_path = "sabe_imgs_path"
  if not os.path.exists(imgs_path):
    os.mkdir(imgs_path)
 
  imgs_jsons_list = os.listdir(imgs_jsons_files)
 
  save_imgs(imgs_jsons_files, imgs_path)
  save_labels(imgs_jsons_files, labels_path)
  print("done!!!")

4. 转化标注框txt格式为xml格式;

# encoding = utf-8
import os
import numpy as np
import codecs
import cv2
 
def read_txt(label_path):
  file = open(label_path,'r',encoding='utf-8')
  label_lines = file.readlines()
  label = []
  for line in label_lines:
    one_line = float(line.strip().split('\n')[0])
    label.extend([one_line])
  return np.array(label,dtype=np.float64)
 
def covert_xml(label,xml_path, img_name, img_path):
  # 获得图片信息
  img = cv2.imread(img_path)
  height, width, depth = img.shape
  x_min,y_min,x_max,y_max = label
 
  xml = codecs.open(xml_path, 'w', encoding='utf-8')
  xml.write('<annotation>\n')
  xml.write('\t<folder>' + 'VOC2007' + '</folder>\n')
  xml.write('\t<filename>' + img_name + '</filename>\n')
  xml.write('\t<source>\n')
  xml.write('\t\t<database>The VOC 2007 Database</database>\n')
  xml.write('\t\t<annotation>Pascal VOC2007</annotation>\n')
  xml.write('\t\t<image>flickr</image>\n')
  xml.write('\t\t<flickrid>NULL</flickrid>\n')
  xml.write('\t</source>\n')
  xml.write('\t<owner>\n')
  xml.write('\t\t<flickrid>NULL</flickrid>\n')
  xml.write('\t\t<name>faster</name>\n')
  xml.write('\t</owner>\n')
  xml.write('\t<size>\n')
  xml.write('\t\t<width>' + str(width) + '</width>\n')
  xml.write('\t\t<height>' + str(height) + '</height>\n')
  xml.write('\t\t<depth>' + str(depth) + '</depth>\n')
  xml.write('\t</size>\n')
  xml.write('\t\t<segmented>0</segmented>\n')
  xml.write('\t<object>\n')
  xml.write('\t\t<name>plate</name>\n')
  xml.write('\t\t<pose>Unspecified</pose>\n')
  xml.write('\t\t<truncated>0</truncated>\n')
  xml.write('\t\t<difficult>0</difficult>\n')
  xml.write('\t\t<bndbox>\n')
  xml.write('\t\t\t<xmin>' + str(x_min) + '</xmin>\n')
  xml.write('\t\t\t<ymin>' + str(y_min) + '</ymin>\n')
  xml.write('\t\t\t<xmax>' + str(x_max) + '</xmax>\n')
  xml.write('\t\t\t<ymax>' + str(y_max) + '</ymax>\n')
  xml.write('\t\t</bndbox>\n')
  xml.write('\t</object>\n')
  xml.write('</annotation>')
 
if __name__=='__main__':
  labels_file_path = "D:/Code_py/VOC2007/labels/"
  imgs_file_path = "D:/Code_Py/VOC2007/imgs/"
 
  xmls_file_path = "D:/Code_py/VOC2007/xmls/"
  if not os.path.exists(xmls_file_path):
    os.mkdir(xmls_file_path)
 
  labels_name = os.listdir(labels_file_path)
  for label_name in labels_name:
    label_path = os.path.join(labels_file_path, label_name)
    label = read_txt(label_path)
 
    xml_name = label_name[:6]+'.xml'
    xml_path = os.path.join(xmls_file_path, xml_name)
 
    img_name = label_name[:6]+'.jpg'
    img_path = os.path.join(imgs_file_path, img_name)
 
    covert_xml(label, xml_path, img_name, img_path)

5. 切分数据集为训练集、验证集和测试集,仅保存图片的名称到txt问价下即可;

import os
import numpy as np
 
if __name__=='__main__':
  root = "save_path"
  train = open(root+"train.txt", 'w', encoding='utf-8')
  train_val = open(root+"trainval.txt", 'w', encoding='utf-8')
  test = open(root+"test.txt", 'w', encoding='utf-8')
  val = open(root+"val.txt", 'w', encoding='utf-8')
 
  imgs_path = os.path.join(root, "imgs")
 
  imgs_name = os.listdir(imgs_path)
 
  # 首先切分训练验证集和测试集
  train_val_img_info = []
  for img_name in imgs_name:
    x = np.random.uniform(0,1)
    img_info = str(img_name).strip().split('.')[0]
    # 随机选取1/2比例的数据为测试集
    if x>0.5:
      train_val_img_info.append(img_info)
      train_val.writelines(img_info)
    else:
      test.writelines(img_info+'\n')
 
  # 然后切分训练验证集为训练集和验证集
  for img_name in train_val_img_info:
    x = np.random.uniform(0,1)
    if x>0.5:
      train.writelines(img_name+'\n')
    else:
      val.writelines(img_name+'\n')

以上这篇将数据集制作成VOC数据集格式的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python通过urllib2爬网页上种子下载示例
Feb 24 Python
Python采集腾讯新闻实例
Jul 10 Python
跟老齐学Python之for循环语句
Oct 02 Python
python中引用与复制用法实例分析
Jun 04 Python
下载python中Crypto库报错:ModuleNotFoundError: No module named ‘Crypto’的解决
Apr 23 Python
用Python shell简化开发
Aug 08 Python
python虚拟环境迁移方法
Jan 03 Python
详解Python odoo中嵌入html简单的分页功能
May 29 Python
Python button选取本地图片并显示的实例
Jun 13 Python
使用python模拟命令行终端的示例
Aug 13 Python
OpenCV 表盘指针自动读数的示例代码
Apr 10 Python
MATLAB数学建模之画图汇总
Jul 16 Python
将labelme格式数据转化为标准的coco数据集格式方式
Feb 17 #Python
开启Django博客的RSS功能的实现方法
Feb 17 #Python
Python3打包exe代码2种方法实例解析
Feb 17 #Python
Django 博客实现简单的全文搜索的示例代码
Feb 17 #Python
Python使用qrcode二维码库生成二维码方法详解
Feb 17 #Python
django2.2 和 PyMySQL版本兼容问题
Feb 17 #Python
基于python3的socket聊天编程
Feb 17 #Python
You might like
推荐一篇入门级的Class文章
2007/03/19 PHP
Zend Guard一些常见问题解答
2008/09/11 PHP
使用PHP接收POST数据,解析json数据
2013/06/28 PHP
解决php 处理 form 表单提交多个 name 属性值相同的 input 标签问题
2017/05/11 PHP
laravel实现批量更新多条记录的方法示例
2017/10/22 PHP
Aster vs Newbee BO5 第二场2.19
2021/03/10 DOTA
javascript实现的动态文字变换
2007/07/28 Javascript
13个绚丽的Jquery 界面设计网站推荐
2010/09/28 Javascript
统计jQuery中各字符串出现次数的工具
2012/05/03 Javascript
Jquery下EasyUI组件中的DataGrid结果集清空方法
2014/01/06 Javascript
js跳转页面方法实现汇总
2014/02/11 Javascript
jquery中ajax函数执行顺序问题之如何设置同步
2014/02/28 Javascript
JavaScript实现打字效果的方法
2015/07/10 Javascript
Flow之一个新的Javascript静态类型检查器
2015/12/21 Javascript
jQuery基于函数重载实现自定义Alert函数样式的方法
2016/07/27 Javascript
AngularJS基础 ng-if 指令用法
2016/08/01 Javascript
基于JS快速实现导航下拉菜单动画效果附源码下载
2016/10/27 Javascript
js实现省份下拉菜单效果
2017/02/15 Javascript
js编写简单的计时器功能
2017/07/15 Javascript
vue slot 在子组件中显示父组件传递的模板
2018/03/02 Javascript
浅谈vue后台管理系统权限控制思考与实践
2018/12/19 Javascript
jQuery开发仿QQ版音乐播放器
2020/07/10 jQuery
vue登录页实现使用cookie记住7天密码功能的方法
2021/02/18 Vue.js
Python 文件和输入输出小结
2013/10/09 Python
Python subprocess模块详细解读
2018/01/29 Python
Python读写/追加excel文件Demo分享
2018/05/03 Python
Python读取txt某几列绘图的方法
2018/10/14 Python
Python基于httpx模块实现发送请求
2020/07/07 Python
python自动生成sql语句的脚本
2021/02/24 Python
浅谈基于Canvas的手绘风格图形库Rough.js
2018/03/19 HTML / CSS
高中毕业自我鉴定
2013/12/22 职场文书
2014新年元旦活动策划方案
2014/02/18 职场文书
小组口号大全
2014/06/09 职场文书
村当支部个人对照检查材料思想汇报
2014/10/06 职场文书
承诺书范本
2015/01/21 职场文书
微信小程序基础教程之echart的使用
2021/06/01 Javascript