PyTorch实现ResNet50、ResNet101和ResNet152示例


Posted in Python onJanuary 14, 2020

PyTorch: https://github.com/shanglianlm0525/PyTorch-Networks

PyTorch实现ResNet50、ResNet101和ResNet152示例

import torch
import torch.nn as nn
import torchvision
import numpy as np

print("PyTorch Version: ",torch.__version__)
print("Torchvision Version: ",torchvision.__version__)

__all__ = ['ResNet50', 'ResNet101','ResNet152']

def Conv1(in_planes, places, stride=2):
  return nn.Sequential(
    nn.Conv2d(in_channels=in_planes,out_channels=places,kernel_size=7,stride=stride,padding=3, bias=False),
    nn.BatchNorm2d(places),
    nn.ReLU(inplace=True),
    nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
  )

class Bottleneck(nn.Module):
  def __init__(self,in_places,places, stride=1,downsampling=False, expansion = 4):
    super(Bottleneck,self).__init__()
    self.expansion = expansion
    self.downsampling = downsampling

    self.bottleneck = nn.Sequential(
      nn.Conv2d(in_channels=in_places,out_channels=places,kernel_size=1,stride=1, bias=False),
      nn.BatchNorm2d(places),
      nn.ReLU(inplace=True),
      nn.Conv2d(in_channels=places, out_channels=places, kernel_size=3, stride=stride, padding=1, bias=False),
      nn.BatchNorm2d(places),
      nn.ReLU(inplace=True),
      nn.Conv2d(in_channels=places, out_channels=places*self.expansion, kernel_size=1, stride=1, bias=False),
      nn.BatchNorm2d(places*self.expansion),
    )

    if self.downsampling:
      self.downsample = nn.Sequential(
        nn.Conv2d(in_channels=in_places, out_channels=places*self.expansion, kernel_size=1, stride=stride, bias=False),
        nn.BatchNorm2d(places*self.expansion)
      )
    self.relu = nn.ReLU(inplace=True)
  def forward(self, x):
    residual = x
    out = self.bottleneck(x)

    if self.downsampling:
      residual = self.downsample(x)

    out += residual
    out = self.relu(out)
    return out

class ResNet(nn.Module):
  def __init__(self,blocks, num_classes=1000, expansion = 4):
    super(ResNet,self).__init__()
    self.expansion = expansion

    self.conv1 = Conv1(in_planes = 3, places= 64)

    self.layer1 = self.make_layer(in_places = 64, places= 64, block=blocks[0], stride=1)
    self.layer2 = self.make_layer(in_places = 256,places=128, block=blocks[1], stride=2)
    self.layer3 = self.make_layer(in_places=512,places=256, block=blocks[2], stride=2)
    self.layer4 = self.make_layer(in_places=1024,places=512, block=blocks[3], stride=2)

    self.avgpool = nn.AvgPool2d(7, stride=1)
    self.fc = nn.Linear(2048,num_classes)

    for m in self.modules():
      if isinstance(m, nn.Conv2d):
        nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
      elif isinstance(m, nn.BatchNorm2d):
        nn.init.constant_(m.weight, 1)
        nn.init.constant_(m.bias, 0)

  def make_layer(self, in_places, places, block, stride):
    layers = []
    layers.append(Bottleneck(in_places, places,stride, downsampling =True))
    for i in range(1, block):
      layers.append(Bottleneck(places*self.expansion, places))

    return nn.Sequential(*layers)


  def forward(self, x):
    x = self.conv1(x)

    x = self.layer1(x)
    x = self.layer2(x)
    x = self.layer3(x)
    x = self.layer4(x)

    x = self.avgpool(x)
    x = x.view(x.size(0), -1)
    x = self.fc(x)
    return x

def ResNet50():
  return ResNet([3, 4, 6, 3])

def ResNet101():
  return ResNet([3, 4, 23, 3])

def ResNet152():
  return ResNet([3, 8, 36, 3])


if __name__=='__main__':
  #model = torchvision.models.resnet50()
  model = ResNet50()
  print(model)

  input = torch.randn(1, 3, 224, 224)
  out = model(input)
  print(out.shape)

以上这篇PyTorch实现ResNet50、ResNet101和ResNet152示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
在Python中使用zlib模块进行数据压缩的教程
Jun 26 Python
python字符串,数值计算
Oct 05 Python
Python编程判断一个正整数是否为素数的方法
Apr 14 Python
python中如何使用正则表达式的非贪婪模式示例
Oct 09 Python
selenium+python实现自动化登录的方法
Sep 04 Python
python中数组和矩阵乘法及使用总结(推荐)
May 18 Python
Django框架搭建的简易图书信息网站案例
May 25 Python
python print出共轭复数的方法详解
Jun 25 Python
python 实现12bit灰度图像映射到8bit显示的方法
Jul 08 Python
python多进程下实现日志记录按时间分割
Jul 22 Python
opencv3/python 鼠标响应操作详解
Dec 11 Python
Python排序算法之插入排序及其优化方案详解
Jun 11 Python
python重要函数eval多种用法解析
Jan 14 #Python
关于ResNeXt网络的pytorch实现
Jan 14 #Python
Python属性和内建属性实例解析
Jan 14 #Python
Python程序控制语句用法实例分析
Jan 14 #Python
dpn网络的pytorch实现方式
Jan 14 #Python
Django之form组件自动校验数据实现
Jan 14 #Python
简单了解python filter、map、reduce的区别
Jan 14 #Python
You might like
PHP4中实现动态代理
2006/10/09 PHP
php 图片上添加透明度渐变的效果
2009/06/29 PHP
通过PHP CLI实现简单的数据库实时监控调度
2009/07/01 PHP
CodeIgniter使用phpcms模板引擎
2013/11/12 PHP
php将session放入memcached的设置方法
2014/02/14 PHP
php实现webservice实例
2014/11/06 PHP
JavaScript 原型与继承说明
2010/06/09 Javascript
jquery插件珍藏(图片局部放大/信息提示框)
2013/01/08 Javascript
使用JS 清空File控件的路径值
2013/07/08 Javascript
jquery注册文本框获取焦点清空,失去焦点赋值的简单实例
2016/09/08 Javascript
Angularjs中ng-repeat-start与ng-repeat-end的用法实例介绍
2016/12/31 Javascript
javascript设计模式之模块模式学习笔记
2017/02/15 Javascript
vue系列之动态路由详解【原创】
2017/09/10 Javascript
Node.JS中快速扫描端口并发现局域网内的Web服务器地址(80)
2017/09/18 Javascript
详解Vue之父子组件传值
2019/04/01 Javascript
详解小程序云开发攻略(解决最棘手的问题)
2019/09/30 Javascript
解决vue打包 npm run build-test突然不动了的问题
2020/11/13 Javascript
js实现Element中input组件的部分功能并封装成组件(实例代码)
2021/03/02 Javascript
[43:57]Liquid vs Mineski 2019国际邀请赛小组赛 BO2 第二场 8.16
2019/08/19 DOTA
python实现linux服务器批量修改密码并生成execl
2014/04/22 Python
Python3 能振兴 Python的原因分析
2014/11/28 Python
Python中的MongoDB基本操作:连接、查询实例
2015/02/13 Python
Python的MongoDB模块PyMongo操作方法集锦
2016/01/05 Python
python中defaultdict的用法详解
2017/06/07 Python
python实现多层感知器
2019/01/18 Python
解决Python3下map函数的显示问题
2019/12/04 Python
Python实现屏幕录制功能的代码
2020/03/02 Python
CSS3 二级导航菜单的制作的示例
2018/04/02 HTML / CSS
Yahoo-PHP面试题4
2012/05/05 面试题
回门宴新郎答谢词
2014/01/12 职场文书
详细的大学生创业计划书模板
2014/01/27 职场文书
公司经理聘任书
2014/03/29 职场文书
项目建议书
2015/02/04 职场文书
小学中队活动总结
2015/05/11 职场文书
Laravel中获取IP的真实地理位置
2021/04/01 PHP
中国古风插画师排行榜:夏达第一,第三是阴阳师姑获鸟皮肤创作者
2022/03/18 国漫