遗传算法python版


Posted in Python onMarch 19, 2018

本文实例为大家分享了python遗传算法的具体代码,供大家参考,具体内容如下

1、基本概念

遗传算法python版

遗传算法(GA)是最早由美国Holland教授提出的一种基于自然界的“适者生存,优胜劣汰”基本法则的智能搜索算法。该法则很好地诠释了生物进化的自然选择过程。遗传算法也是借鉴该基本法则,通过基于种群的思想,将问题的解通过编码的方式转化为种群中的个体,并让这些个体不断地通过选择、交叉和变异算子模拟生物的进化过程,然后利用“优胜劣汰”法则选择种群中适应性较强的个体构成子种群,然后让子种群重复类似的进化过程,直到找到问题的最优解或者到达一定的进化(运算)时间。

Ga算法中的几个重要名词概念。

个体(染色体):自然界中一个个体(染色体)代表一个生物,在GA算法中,个体(染色体)代表了具体问题的一个解。

遗传算法python版

基因:在GA算法中,基因代表了具体问题解的一个决策变量,问题解和染色体中基因的对应关系如下所示:

遗传算法python版

种群:多个个体即组成一个种群。GA算法中,一个问题的多组解即构成了问题的解的种群。

2、主要步骤

GA算法的基本步骤如下:

Step 1. 种群初始化。选择一种编码方案然后在解空间内通过随机生成的方式初始化一定数量的个体构成GA的种群。

Step 2. 评估种群。利用启发式算法对种群中的个体(矩形件的排入顺序)生成排样图并依此计算个体的适应函数值(利用率),然后保存当前种群中的最优个体作为搜索到的最优解。

Step 3. 选择操作。根据种群中个体的适应度的大小,通过轮盘赌或者期望值方法,将适应度高的个体从当前种群中选择出来。

Step 4. 交叉操作。将上一步骤选择的个体,用一定的概率阀值Pc控制是否利用单点交叉、多点交叉或者其他交叉方式生成新的交叉个体。

Step 5. 变异操作。用一定的概率阀值Pm控制是否对个体的部分基因执行单点变异或多点变异。

Step 6. 终止判断。若满足终止条件,则终止算法,否则返回Step 2。

流程图如下所示:

遗传算法python版

3、主要操作介绍

3.1 种群初始化

种群的初始化和具体的问题有关。比如一个问题有n个决策变量{x1,x2,…,xn}。每个决策变量有取值范围:下界{L1,L2,…,Ln}和上界{U1,U2,…,Un},则种群中个体的初始化即随机地在决策变量的取值范围内生成各个决策变量的值:Xj={x1,x2,...,xn},其中xi属于范围(Li,Ui)内。所有的个体即构成种群。当每个个体都初始化后,即种群完成初始化。

3.2 评价种群

种群的评价即计算种群中个体的适应度值。假设种群populationpopsize个个体。依次计算每个个体的适应度值及评价种群。

3.3 选择操作

GA算法中常见的选择操作有轮盘赌方式:种群中适应度值更优的个体被选择的概率越大。假设popsize=4,按照如下表达式计算各个个体的被选择概率的大小,然后用圆饼图表示如下。

P(Xj) = fit(Xj)/(fit(X1)+fit(X2)+fit(X3)+fit(X4)),j=1,2,3,4

遗传算法python版

当依据轮盘赌方式进行选择时,则概率越大的越容易被选择到。

3.4 交叉操作

交叉操作也有许多种:单点交叉,两点交叉等。此处仅讲解一下两点交叉。首先利用选择操作从种群中选择两个父辈个体parent1和parent2,然后随机产生两个位置pos1和pos2,将这两个位置中间的基因位信息进行交换,便得到下图所示的off1和off2两个个体,但是这两个个体中一般会存在基因位信息冲突的现象(整数编码时),此时需要对off1和off2个体进行调整:off1中的冲突基因根据parent1中的基因调整为parent2中的相同位置处的基因。如off1中的“1”出现了两次,则第二处的“1”需要调整为parent1中“1”对应的parent2中的“4”,依次类推处理off1中的相冲突的基因。需要注意的是,调整off2,则需要参考parent2。

遗传算法python版

3.5 变异操作

变异操作的话,根据不同的编码方式有不同的变异操作。

如果是浮点数编码,则变异可以就染色体中间的某一个基因位的信息进行变异(重新生成或者其他调整方案)。

遗传算法python版

如果是采用整数编码方案,则一般有多种变异方法:位置变异和符号变异。

位置变异: 

遗传算法python版

符号变异: 

遗传算法python版

4、Python代码

#-*- coding:utf-8 -*- 
 
import random 
import math 
from operator import itemgetter 
 
class Gene: 
 ''''' 
 This is a class to represent individual(Gene) in GA algorithom 
 each object of this class have two attribute: data, size 
 ''' 
 def __init__(self,**data): 
  self.__dict__.update(data)   
  self.size = len(data['data'])#length of gene 
         
   
class GA: 
 ''''' 
 This is a class of GA algorithm. 
 ''' 
 def __init__(self,parameter): 
  ''''' 
  Initialize the pop of GA algorithom and evaluate the pop by computing its' fitness value . 
  The data structure of pop is composed of several individuals which has the form like that: 
   
  {'Gene':a object of class Gene, 'fitness': 1.02(for example)} 
 
  Representation of Gene is a list: [b s0 u0 sita0 s1 u1 sita1 s2 u2 sita2] 
   
  ''' 
  #parameter = [CXPB, MUTPB, NGEN, popsize, low, up] 
  self.parameter = parameter 
 
  low = self.parameter[4] 
  up = self.parameter[5] 
   
  self.bound = [] 
  self.bound.append(low) 
  self.bound.append(up) 
   
  pop = [] 
  for i in range(self.parameter[3]): 
   geneinfo = [] 
   for pos in range(len(low)): 
    geneinfo.append(random.uniform(self.bound[0][pos], self.bound[1][pos]))#initialise popluation 
     
   fitness = evaluate(geneinfo)#evaluate each chromosome 
   pop.append({'Gene':Gene(data = geneinfo), 'fitness':fitness})#store the chromosome and its fitness 
    
  self.pop = pop 
  self.bestindividual = self.selectBest(self.pop)#store the best chromosome in the population 
   
 def selectBest(self, pop): 
  ''''' 
  select the best individual from pop 
  ''' 
  s_inds = sorted(pop, key = itemgetter("fitness"), reverse = False) 
  return s_inds[0] 
   
 def selection(self, individuals, k): 
  ''''' 
  select two individuals from pop 
  ''' 
  s_inds = sorted(individuals, key = itemgetter("fitness"), reverse=True)#sort the pop by the reference of 1/fitness 
  sum_fits = sum(1/ind['fitness'] for ind in individuals) #sum up the 1/fitness of the whole pop 
   
  chosen = [] 
  for i in xrange(k): 
   u = random.random() * sum_fits#randomly produce a num in the range of [0, sum_fits] 
   sum_ = 0 
   for ind in s_inds: 
    sum_ += 1/ind['fitness']#sum up the 1/fitness 
    if sum_ > u: 
     #when the sum of 1/fitness is bigger than u, choose the one, which means u is in the range of [sum(1,2,...,n-1),sum(1,2,...,n)] and is time to choose the one ,namely n-th individual in the pop 
     chosen.append(ind) 
     break 
   
  return chosen  
 
 
 def crossoperate(self, offspring): 
  ''''' 
  cross operation 
  ''' 
  dim = len(offspring[0]['Gene'].data) 
 
  geninfo1 = offspring[0]['Gene'].data#Gene's data of first offspring chosen from the selected pop 
  geninfo2 = offspring[1]['Gene'].data#Gene's data of second offspring chosen from the selected pop 
   
  pos1 = random.randrange(1,dim)#select a position in the range from 0 to dim-1, 
  pos2 = random.randrange(1,dim) 
 
  newoff = Gene(data = [])#offspring produced by cross operation 
  temp = [] 
  for i in range(dim): 
   if (i >= min(pos1,pos2) and i <= max(pos1,pos2)): 
    temp.append(geninfo2[i]) 
    #the gene data of offspring produced by cross operation is from the second offspring in the range [min(pos1,pos2),max(pos1,pos2)] 
   else: 
    temp.append(geninfo1[i]) 
    #the gene data of offspring produced by cross operation is from the frist offspring in the range [min(pos1,pos2),max(pos1,pos2)] 
  newoff.data = temp 
   
  return newoff 
 
 
 def mutation(self, crossoff, bound): 
  ''''' 
  mutation operation 
  ''' 
   
  dim = len(crossoff.data) 
 
  pos = random.randrange(1,dim)#chose a position in crossoff to perform mutation. 
 
  crossoff.data[pos] = random.uniform(bound[0][pos],bound[1][pos]) 
  return crossoff 
  
 def GA_main(self): 
  ''''' 
  main frame work of GA 
  ''' 
   
  popsize = self.parameter[3] 
   
  print("Start of evolution") 
   
  # Begin the evolution 
  for g in range(NGEN): 
    
   print("-- Generation %i --" % g)  
      
   #Apply selection based on their converted fitness 
   selectpop = self.selection(self.pop, popsize)  
 
   nextoff = []  
   while len(nextoff) != popsize:  
    # Apply crossover and mutation on the offspring    
         
    # Select two individuals 
    offspring = [random.choice(selectpop) for i in xrange(2)] 
     
    if random.random() < CXPB: # cross two individuals with probability CXPB 
     crossoff = self.crossoperate(offspring) 
     fit_crossoff = evaluate(self.xydata, crossoff.data)# Evaluate the individuals    
      
     if random.random() < MUTPB: # mutate an individual with probability MUTPB 
      muteoff = self.mutation(crossoff,self.bound) 
      fit_muteoff = evaluate(self.xydata, muteoff.data)# Evaluate the individuals 
      nextoff.append({'Gene':muteoff,'fitness':fit_muteoff}) 
       
   # The population is entirely replaced by the offspring 
   self.pop = nextoff 
    
   # Gather all the fitnesses in one list and print the stats 
   fits = [ind['fitness'] for ind in self.pop] 
     
   length = len(self.pop) 
   mean = sum(fits) / length 
   sum2 = sum(x*x for x in fits) 
   std = abs(sum2 / length - mean**2)**0.5 
   best_ind = self.selectBest(self.pop) 
 
   if best_ind['fitness'] < self.bestindividual['fitness']: 
    self.bestindividual = best_ind 
 
   print("Best individual found is %s, %s" % (self.bestindividual['Gene'].data,self.bestindividual['fitness'])) 
   print(" Min fitness of current pop: %s" % min(fits)) 
   print(" Max fitness of current pop: %s" % max(fits)) 
   print(" Avg fitness of current pop: %s" % mean) 
   print(" Std of currrent pop: %s" % std) 
   
  print("-- End of (successful) evolution --")  
 
if __name__ == "__main__": 
 
 CXPB, MUTPB, NGEN, popsize = 0.8, 0.3, 50, 100#control parameters 
  
 up = [64, 64, 64, 64, 64, 64, 64, 64, 64, 64]#upper range for variables 
 low = [-64, -64, -64, -64, -64, -64, -64, -64, -64, -64]#lower range for variables 
 parameter = [CXPB, MUTPB, NGEN, popsize, low, up] 
  
 run = GA(parameter) 
 run.GA_main()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
复制粘贴功能的Python程序
Apr 04 Python
Python接收Gmail新邮件并发送到gtalk的方法
Mar 10 Python
Python下使用Psyco模块优化运行速度
Apr 05 Python
浅析Python编写函数装饰器
Mar 18 Python
详解duck typing鸭子类型程序设计与Python的实现示例
Jun 03 Python
用Django实现一个可运行的区块链应用
Mar 08 Python
Python面向对象基础入门之设置对象属性
Dec 11 Python
Python变量类型知识点总结
Feb 18 Python
Python对象转换为json的方法步骤
Apr 25 Python
selenium2.0中常用的python函数汇总
Aug 05 Python
对Pytorch中nn.ModuleList 和 nn.Sequential详解
Aug 18 Python
使用keras实现非线性回归(两种加激活函数的方式)
Jul 05 Python
python实现简单遗传算法
Mar 19 #Python
python psutil库安装教程
Mar 19 #Python
Python递归实现汉诺塔算法示例
Mar 19 #Python
Python实现替换文件中指定内容的方法
Mar 19 #Python
python书籍信息爬虫实例
Mar 19 #Python
python中字符串比较使用is、==和cmp()总结
Mar 18 #Python
Python使用zip合并相邻列表项的方法示例
Mar 17 #Python
You might like
海贼王:最美的悬赏令!
2020/03/02 日漫
php 伪静态之IIS篇
2014/06/02 PHP
php格式化电话号码的方法
2015/04/24 PHP
详解Yii2 rules 的验证规则
2016/12/02 PHP
javascript基本语法分析说明
2008/06/15 Javascript
你需要知道的10个最佳javascript开发实践小结
2012/04/15 Javascript
jQuery ui插件的使用方法代码实例
2013/05/08 Javascript
jquery判断元素是否隐藏的多种方法
2014/05/06 Javascript
JQuery选择器、过滤器大整理
2015/05/26 Javascript
浅谈jQuery中height与width
2015/07/06 Javascript
jQuery插件AjaxFileUpload实现ajax文件上传
2016/05/05 Javascript
react-native 封装选择弹出框示例(试用ios&amp;android)
2017/07/11 Javascript
jQuery实现的弹幕效果完整实例
2017/09/06 jQuery
vue复合组件实现注册表单功能
2017/11/06 Javascript
vue-cli中的babel配置文件.babelrc实例详解
2018/02/22 Javascript
[58:35]OG vs EG 2019国际邀请赛淘汰赛 胜者组 BO3 第二场 8.22
2019/09/05 DOTA
[59:00]DOTA2-DPC中国联赛 正赛 Ehome vs PSG.LGD BO3 第一场 3月7日
2021/03/11 DOTA
详解python中的json的基本使用方法
2016/12/21 Python
python用户管理系统的实例讲解
2017/12/23 Python
Django Rest framework之权限的实现示例
2018/12/17 Python
python多进程下实现日志记录按时间分割
2019/07/22 Python
python多线程实现TCP服务端
2019/09/03 Python
python3+openCV 获取图片中文本区域的最小外接矩形实例
2020/06/02 Python
基于Python快速处理PDF表格数据
2020/06/03 Python
美国领先的奢侈手表在线零售商:WatchMaxx
2017/12/17 全球购物
英国Iceland杂货店:网上食品购物
2020/12/16 全球购物
幼儿园园长自我鉴定
2013/10/22 职场文书
环境保护标语
2014/06/20 职场文书
工作感想范文
2015/08/07 职场文书
早上好问候语大全
2015/11/10 职场文书
公司团队口号霸气押韵
2015/12/24 职场文书
民警忠诚教育心得体会
2016/01/23 职场文书
如何做好工作总结!
2019/04/10 职场文书
进行数据处理的6个 Python 代码块分享
2022/04/06 Python
Ruby处理CSV数据方法详解
2022/04/18 Ruby
instantclient客户端 连接oracle数据库
2022/04/26 Oracle