Python利用multiprocessing实现最简单的分布式作业调度系统实例


Posted in Python onNovember 14, 2017

介绍

Python的multiprocessing模块不但支持多进程,其中managers子模块还支持把多进程分布到多台机器上。一个服务进程可以作为调度者,将任务分布到其他多个机器的多个进程中,依靠网络通信。想到这,就在想是不是可以使用此模块来实现一个简单的作业调度系统。在这之前,我们先来详细了解下python中的多进程管理包multiprocessing。

multiprocessing.Process

multiprocessing包是Python中的多进程管理包。它与 threading.Thread类似,可以利用multiprocessing.Process对象来创建一个进程。该进程可以允许放在Python程序内部编写的函数中。该Process对象与Thread对象的用法相同,拥有is_alive()、join([timeout])、run()、start()、terminate()等方法。属性有:authkey、daemon(要通过start()设置)、exitcode(进程在运行时为None、如果为?N,表示被信号N结束)、name、pid。此外multiprocessing包中也有Lock/Event/Semaphore/Condition类,用来同步进程,其用法也与threading包中的同名类一样。multiprocessing的很大一部份与threading使用同一套API,只不过换到了多进程的情境。

这个模块表示像线程一样管理进程,这个是multiprocessing的核心,它与threading很相似,对多核CPU的利用率会比threading好的多。

看一下Process类的构造方法:

__init__(self, group=None, target=None, name=None, args=(), kwargs={})

参数说明:

  • group:进程所属组。基本不用
  • target:表示调用对象。
  • args:表示调用对象的位置参数元组。
  • name:别名
  • kwargs:表示调用对象的字典。

创建进程的简单实例:

#coding=utf-8
import multiprocessing

def do(n) :
 #获取当前线程的名字
 name = multiprocessing.current_process().name
 print name,'starting'
 print "worker ", n
 return 

if __name__ == '__main__' :
 numList = []
 for i in xrange(5) :
 p = multiprocessing.Process(target=do, args=(i,))
 numList.append(p)
 p.start()
 p.join()
 print "Process end."

执行结果:

Process-1 starting
worker 0
Process end.
Process-2 starting
worker 1
Process end.
Process-3 starting
worker 2
Process end.
Process-4 starting
worker 3
Process end.
Process-5 starting
worker 4
Process end.

创建子进程时,只需要传入一个执行函数和函数的参数,创建一个Process实例,并用其start()方法启动,join()方法表示等待子进程结束以后再继续往下运行,通常用于进程间的同步。

注意:

在Windows上要想使用进程模块,就必须把有关进程的代码写在当前.py文件的if __name__ == ‘__main__' :语句的下面,才能正常使用Windows下的进程模块。Unix/Linux下则不需要。

multiprocess.Pool

当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,十几个还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,此时可以发挥进程池的功效。

Pool可以提供指定数量的进程供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来它。

apply_async和apply

函数原型:

apply_async(func[, args=()[, kwds={}[, callback=None]]])

二者都是向进程池中添加新的进程,不同的时,apply每次添加新的进程时,主进程和新的进程会并行执行,但是主进程会阻塞,直到新进程的函数执行结束。 这是很低效的,所以python3.x之后不再使用

apply_async和apply功能相同,但是主进程不会阻塞。

# -*- coding:utf-8 -*-

import multiprocessing
import time

def func(msg):
 print "*msg: ", msg
 time.sleep(3)
 print "*end"

if __name__ == "__main__":
 # 维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去
 pool = multiprocessing.Pool(processes=3)
 for i in range(10):
 msg = "hello [{}]".format(i)
 # pool.apply(func, (msg,))
 pool.apply_async(func, (msg,)) # 异步开启进程, 非阻塞型, 能够向池中添加进程而不等待其执行完毕就能再次执行循环

 print "--" * 10
 pool.close() # 关闭pool, 则不会有新的进程添加进去
 pool.join() # 必须在join之前close, 然后join等待pool中所有的线程执行完毕
 print "All process done."

运行结果:

"D:\Program Files\Anaconda2\python.exe" E:/pycharm/test/multiprocessing/v1.py
--------------------
*msg: hello [0]
*msg: hello [1]
*msg: hello [2]
*end
*msg: hello [3]
*end
*end
*msg: hello [4]
*msg: hello [5]
*end
*msg: hello [6]
*end
*end
*msg: hello [7]
*msg: hello [8]
*end
*msg: hello [9]
*end*end

*end
All process done.

Process finished with exit code 0

获得进程的执行结果

# -*- coding:utf-8 -*-

import multiprocessing
import time

def func_with_return(msg):
 print "*msg: ", msg
 time.sleep(3)
 print "*end"
 return "{} return".format(msg)

if __name__ == "__main__":
 # 维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去
 pool = multiprocessing.Pool(processes=3)
 results = []
 for i in range(10):
 msg = "hello [{}]".format(i)
 res = pool.apply_async(func_with_return, (msg,)) # 异步开启进程, 非阻塞型, 能够向池中添加进程而不等待其执行完毕就能再次执行循环
 results.append(res)

 print "--" * 10
 pool.close() # 关闭pool, 则不会有新的进程添加进去
 pool.join() # 必须在join之前close, 然后join等待pool中所有的线程执行完毕
 print "All process done."

 print "Return results: "
 for i in results:
 print i.get() # 获得进程的执行结果

结果:

"D:\Program Files\Anaconda2\python.exe" E:/pycharm/test/multiprocessing/v1.py
--------------------
*msg: hello [0]
*msg: hello [1]
*msg: hello [2]
*end
*end
*msg: hello [3]
*msg: hello [4]
*end
*msg: hello [5]
*end
*end
*msg: hello [6]
*msg: hello [7]
*end
*msg: hello [8]
*end
*end
*msg: hello [9]
*end
*end
All process done.
Return results: 
hello [0] return
hello [1] return
hello [2] return
hello [3] return
hello [4] return
hello [5] return
hello [6] return
hello [7] return
hello [8] return
hello [9] return

Process finished with exit code 0

map

函数原型:

map(func, iterable[, chunksize=None])

Pool类中的map方法,与内置的map函数用法行为基本一致,它会使进程阻塞直到返回结果。

注意,虽然第二个参数是一个迭代器,但在实际使用中,必须在整个队列都就绪后,程序才会运行子进程。

# -*- coding:utf-8 -*-

import multiprocessing
import time

def func_with_return(msg):
 print "*msg: ", msg
 time.sleep(3)
 print "*end"
 return "{} return".format(msg)

if __name__ == "__main__":
 # 维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去
 pool = multiprocessing.Pool(processes=3)
 results = []
 msgs = []
 for i in range(10):
 msg = "hello [{}]".format(i)
 msgs.append(msg)

 results = pool.map(func_with_return, msgs)

 print "--" * 10
 pool.close() # 关闭pool, 则不会有新的进程添加进去
 pool.join() # 必须在join之前close, 然后join等待pool中所有的线程执行完毕
 print "All process done."

 print "Return results: "
 for i in results:
 print i # 获得进程的执行结果

执行结果:

"D:\Program Files\Anaconda2\python.exe" E:/pycharm/test/multiprocessing/v2.py
*msg: hello [0]
*msg: hello [1]
*msg: hello [2]
*end*end

*msg: hello [3]
*msg: hello [4]
*end
*msg: hello [5]
*end*end

*msg: hello [6]
*msg: hello [7]
*end
*msg: hello [8]
*end
*end
*msg: hello [9]
*end
*end
--------------------
All process done.
Return results: 
hello [0] return
hello [1] return
hello [2] return
hello [3] return
hello [4] return
hello [5] return
hello [6] return
hello [7] return
hello [8] return
hello [9] return

Process finished with exit code 0

注意:执行结果中“—-”的位置,可以看到,map之后,主进程是阻塞的,等待map的结果返回

close()

关闭进程池(pool),使其不在接受新的任务。

terminate()

结束工作进程,不在处理未处理的任务。

join()

主进程阻塞等待子进程的退出,join方法必须在close或terminate之后使用。

进程间通信

多进程最麻烦的地方就是进程间通信,IPC比线程通信要难处理的多,所以留作单独一篇来记录

利用multiprocessing实现一个最简单的分布式作业调度系统

Job

首先创建一个Job类,为了测试简单,只包含一个job id属性,将来可以封装一些作业状态,作业命令,执行用户等属性。

job.py

#!/usr/bin/env python
# -*- coding: utf-8 -*-

class Job:
 def __init__(self, job_id):
 self.job_id = job_id

Master

Master用来派发作业和显示运行完成的作业信息

master.py

#!/usr/bin/env python
# -*- coding: utf-8 -*-

from Queue import Queue
from multiprocessing.managers import BaseManager
from job import Job


class Master:

 def __init__(self):
 # 派发出去的作业队列
 self.dispatched_job_queue = Queue()
 # 完成的作业队列
 self.finished_job_queue = Queue()

 def get_dispatched_job_queue(self):
 return self.dispatched_job_queue

 def get_finished_job_queue(self):
 return self.finished_job_queue

 def start(self):
 # 把派发作业队列和完成作业队列注册到网络上
 BaseManager.register('get_dispatched_job_queue', callable=self.get_dispatched_job_queue)
 BaseManager.register('get_finished_job_queue', callable=self.get_finished_job_queue)

 # 监听端口和启动服务
 manager = BaseManager(address=('0.0.0.0', 8888), authkey='jobs')
 manager.start()

 # 使用上面注册的方法获取队列
 dispatched_jobs = manager.get_dispatched_job_queue()
 finished_jobs = manager.get_finished_job_queue()

 # 这里一次派发10个作业,等到10个作业都运行完后,继续再派发10个作业
 job_id = 0
 while True:
  for i in range(0, 10):
  job_id = job_id + 1
  job = Job(job_id)
  print('Dispatch job: %s' % job.job_id)
  dispatched_jobs.put(job)

  while not dispatched_jobs.empty():
  job = finished_jobs.get(60)
  print('Finished Job: %s' % job.job_id)

 manager.shutdown()

if __name__ == "__main__":
 master = Master()
 master.start()

Slave

Slave用来运行master派发的作业并将结果返回

slave.py

#!/usr/bin/env python
# -*- coding: utf-8 -*-

import time
from Queue import Queue
from multiprocessing.managers import BaseManager
from job import Job


class Slave:

 def __init__(self):
 # 派发出去的作业队列
 self.dispatched_job_queue = Queue()
 # 完成的作业队列
 self.finished_job_queue = Queue()

 def start(self):
 # 把派发作业队列和完成作业队列注册到网络上
 BaseManager.register('get_dispatched_job_queue')
 BaseManager.register('get_finished_job_queue')

 # 连接master
 server = '127.0.0.1'
 print('Connect to server %s...' % server)
 manager = BaseManager(address=(server, 8888), authkey='jobs')
 manager.connect()

 # 使用上面注册的方法获取队列
 dispatched_jobs = manager.get_dispatched_job_queue()
 finished_jobs = manager.get_finished_job_queue()

 # 运行作业并返回结果,这里只是模拟作业运行,所以返回的是接收到的作业
 while True:
  job = dispatched_jobs.get(timeout=1)
  print('Run job: %s ' % job.job_id)
  time.sleep(1)
  finished_jobs.put(job)

if __name__ == "__main__":
 slave = Slave()
 slave.start()

测试

分别打开三个linux终端,第一个终端运行master,第二个和第三个终端用了运行slave,运行结果如下

master

$ python master.py 
Dispatch job: 1
Dispatch job: 2
Dispatch job: 3
Dispatch job: 4
Dispatch job: 5
Dispatch job: 6
Dispatch job: 7
Dispatch job: 8
Dispatch job: 9
Dispatch job: 10
Finished Job: 1
Finished Job: 2
Finished Job: 3
Finished Job: 4
Finished Job: 5
Finished Job: 6
Finished Job: 7
Finished Job: 8
Finished Job: 9
Dispatch job: 11
Dispatch job: 12
Dispatch job: 13
Dispatch job: 14
Dispatch job: 15
Dispatch job: 16
Dispatch job: 17
Dispatch job: 18
Dispatch job: 19
Dispatch job: 20
Finished Job: 10
Finished Job: 11
Finished Job: 12
Finished Job: 13
Finished Job: 14
Finished Job: 15
Finished Job: 16
Finished Job: 17
Finished Job: 18
Dispatch job: 21
Dispatch job: 22
Dispatch job: 23
Dispatch job: 24
Dispatch job: 25
Dispatch job: 26
Dispatch job: 27
Dispatch job: 28
Dispatch job: 29
Dispatch job: 30

slave1

$ python slave.py 
Connect to server 127.0.0.1...
Run job: 1 
Run job: 2 
Run job: 3 
Run job: 5 
Run job: 7 
Run job: 9 
Run job: 11 
Run job: 13 
Run job: 15 
Run job: 17 
Run job: 19 
Run job: 21 
Run job: 23

slave2

$ python slave.py 
Connect to server 127.0.0.1...
Run job: 4 
Run job: 6 
Run job: 8 
Run job: 10 
Run job: 12 
Run job: 14 
Run job: 16 
Run job: 18 
Run job: 20 
Run job: 22 
Run job: 24

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对三水点靠木的支持。

Python 相关文章推荐
Python程序员鲜为人知但你应该知道的17个问题
Jun 04 Python
python 出现SyntaxError: non-keyword arg after keyword arg错误解决办法
Feb 14 Python
python3中dict(字典)的使用方法示例
Mar 22 Python
node.js获取参数的常用方法(总结)
May 29 Python
浅谈flask截获所有访问及before/after_request修饰器
Jan 18 Python
对Python生成汉字字库文字,以及转换为文字图片的实例详解
Jan 29 Python
PyQT5 QTableView显示绑定数据的实例详解
Jun 25 Python
详解python实现小波变换的一个简单例子
Jul 18 Python
python进行参数传递的方法
May 12 Python
python 爬取B站原视频的实例代码
Sep 09 Python
Pytorch1.5.1版本安装的方法步骤
Dec 31 Python
python保存图片的四个常用方法
Feb 28 Python
python中os和sys模块的区别与常用方法总结
Nov 14 #Python
Python 将RGB图像转换为Pytho灰度图像的实例
Nov 14 #Python
人机交互程序 python实现人机对话
Nov 14 #Python
python密码错误三次锁定(实例讲解)
Nov 14 #Python
Python如何快速上手? 快速掌握一门新语言的方法
Nov 14 #Python
python+opencv实现的简单人脸识别代码示例
Nov 14 #Python
解读! Python在人工智能中的作用
Nov 14 #Python
You might like
索尼ICF-SW100收音机评测
2021/03/02 无线电
php 网页播放器用来播放在线视频的代码(自动判断并选择视频文件类型)
2010/06/03 PHP
ThinkPHP中自定义目录结构的设置方法
2014/08/15 PHP
非常经典的PHP文件上传类分享
2016/05/15 PHP
Laravel 5.5官方推荐的Nginx配置学习教程
2017/10/06 PHP
阿里云Win2016安装Apache和PHP环境图文教程
2018/03/11 PHP
laravel-admin解决表单select联动时,编辑默认没选上的问题
2019/09/30 PHP
javascript setAttribute, getAttribute 在不同浏览器上的不同表现
2010/08/05 Javascript
javascript禁用键盘功能键让右击及其他键无效
2013/10/09 Javascript
js检测浏览器版本、核心、是否移动端示例
2014/04/24 Javascript
jQuery表格列宽可拖拽改变且兼容firfox
2014/09/03 Javascript
分享9个最好用的JavaScript开发工具和代码编辑器
2015/03/24 Javascript
jQuery左右滚动支持图片放大缩略图图片轮播代码分享
2015/08/26 Javascript
JS+CSS实现带有碰撞缓冲效果的竖向导航条代码
2015/09/15 Javascript
Bootstrap导航条鼠标悬停下拉菜单
2017/01/04 Javascript
JavaScript中this的用法及this在不同应用场景的作用解析
2017/04/13 Javascript
详解Vue 开发模式下跨域问题
2017/06/06 Javascript
使用jQuery实现动态添加小广告
2017/07/11 jQuery
vue使用mint-ui实现下拉刷新和无限滚动的示例代码
2017/11/06 Javascript
LayerClose弹窗关闭刷新方法
2018/08/17 Javascript
如何为vuex实现带参数的 getter和state.commit
2019/01/04 Javascript
vue使用Font Awesome的方法步骤
2019/02/26 Javascript
JS实现checkbox互斥(单选)功能示例
2019/05/04 Javascript
深入理解webpack process.env.NODE_ENV配置
2020/02/23 Javascript
Python实现将通信达.day文件读取为DataFrame
2018/12/22 Python
Python实现多态、协议和鸭子类型的代码详解
2019/05/05 Python
Python hexstring-list-str之间的转换方法
2019/06/12 Python
python opencv pytesseract 验证码识别的实现
2020/08/28 Python
大学生村官典型材料
2014/01/12 职场文书
乡镇干部十八大感言
2014/02/17 职场文书
园艺师求职信
2014/04/27 职场文书
电子商务专业应届生求职信
2014/05/28 职场文书
我的中国梦演讲稿500字
2014/08/19 职场文书
职工擅自离岗检讨书
2014/09/23 职场文书
2016年党员承诺书范文
2016/03/24 职场文书
React中的Context应用场景分析
2021/06/11 Javascript