Vertica集成Apache Hudi重磅使用指南


Posted in Servers onMarch 31, 2022

1. 摘要

本文演示了使用外部表集成 Vertica 和 Apache Hudi。 在演示中我们使用 Spark 上的 Apache Hudi 将数据摄取到 S3 中,并使用 Vertica 外部表访问这些数据。

2. Apache Hudi介绍

Apache Hudi 是一种变更数据捕获 (CDC) 工具,可在不同时间线将事务记录在表中。 Hudi 代表 Hadoop Upserts Deletes and Incrementals,是一个开源框架。 Hudi 提供 ACID 事务、可扩展的元数据处理,并统一流和批处理数据处理。
以下流程图说明了该过程。 使用安装在 Apache Spark 上的 Hudi 将数据处理到 S3,并从 Vertica 外部表中读取 S3 中的数据更改。

Vertica集成Apache Hudi重磅使用指南

3. 环境准备

Apache Spark 环境。 使用具有 1 个 Master 和 3 个 Worker 的 4 节点集群进行了测试。 按照在多节点集群上设置 Apache Spark 中的说明安装 Spark 集群环境。 启动 Spark 多节点集群。

Vertica 分析数据库。 使用 Vertica Enterprise 11.0.0 进行了测试。

AWS S3 或 S3 兼容对象存储。 使用 MinIO 作为 S3 存储桶进行了测试。

需要以下 jar 文件。将 jar 复制到 Spark 机器上任何需要的位置,将这些 jar 文件放在 /opt/spark/jars 中。

Hadoop - hadoop-aws-2.7.3.jar

AWS - aws-java-sdk-1.7.4.jar

在 Vertica 数据库中运行以下命令来设置访问存储桶的 S3 参数:

SELECT SET_CONFIG_PARAMETER('AWSAuth', 'accesskey:secretkey');
SELECT SET_CONFIG_PARAMETER('AWSRegion','us-east-1');
SELECT SET_CONFIG_PARAMETER('AWSEndpoint','<S3_IP>:9000');
SELECT SET_CONFIG_PARAMETER('AWSEnableHttps','0');

endpoint可能会有所不同,具体取决于 S3 存储桶位置选择的 S3 对象存储。

4. Vertica和Apache Hudi集成

要将 Vertica 与 Apache Hudi 集成,首先需要将 Apache Spark 与 Apache Hudi 集成,配置 jars,以及访问 AWS S3 的连接。 其次,将 Vertica 连接到 Apache Hudi。 然后对 S3 存储桶执行 Insert、Append、Update 等操作。
按照以下部分中的步骤将数据写入 Vertica。
在 Apache Spark 上配置 Apache Hudi 和 AWS S3
配置 Vertica 和 Apache Hudi 集成

4.1 在 Apache Spark 上配置 Apache Hudi 和 AWS S3

在 Apache Spark 机器中运行以下命令。
这会下载 Apache Hudi 包,配置 jar 文件,以及 AWS S3

/opt/spark/bin/spark-shell \
--conf "spark.serializer=org.apache.spark.serializer.KryoSerializer"\--packages org.apache.hudi:hudi-spark3-bundle_2.12:0.9.0,org.apache.spark:spark-avro_2.12:3.0.1

导入Hudi的读、写等所需的包:

import org.apache.hudi.QuickstartUtils._
import scala.collection.JavaConversions._
import org.apache.spark.sql.SaveMode._
import org.apache.hudi.DataSourceReadOptions._
import org.apache.hudi.DataSourceWriteOptions._
import org.apache.hudi.config.HoodieWriteConfig._

使用以下命令根据需要配置 Minio 访问密钥、Secret key、Endpoint 和其他 S3A 算法和路径。

spark.sparkContext.hadoopConfiguration.set("fs.s3a.access.key", "*****")
spark.sparkContext.hadoopConfiguration.set("fs.s3a.secret.key", "*****")
spark.sparkContext.hadoopConfiguration.set("fs.s3a.endpoint", "http://XXXX.9000")
spark.sparkContext.hadoopConfiguration.set("fs.s3a.path.style.access", "true")
sc.hadoopConfiguration.set("fs.s3a.signing-algorithm","S3SignerType")

创建变量来存储 MinIO 的表名和 S3 路径。

val tableName = “Trips”
val basepath = “s3a://apachehudi/vertica/”

准备数据,使用 Scala 在 Apache spark 中创建示例数据

val df = Seq(
("aaa","r1","d1",10,"US","20211001"),
("bbb","r2","d2",20,"Europe","20211002"),
("ccc","r3","d3",30,"India","20211003"),
("ddd","r4","d4",40,"Europe","20211004"),
("eee","r5","d5",50,"India","20211005"),
).toDF("uuid", "rider", "driver","fare","partitionpath","ts")

将数据写入 AWS S3 并验证此数据

df.write.format("org.apache.hudi").
options(getQuickstartWriteConfigs).
option(PRECOMBINE_FIELD_OPT_KEY, "ts").
option(RECORDKEY_FIELD_OPT_KEY, "uuid").
option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath").
option(TABLE_NAME, tableName).
mode(Overwrite).
save(basePath)

使用 Scala 运行以下命令以验证是否从 S3 存储桶中正确读取数据。

spark.read.format("hudi").load(basePath).createOrReplaceTempView("dta")
spark.sql("select _hoodie_commit_time, uuid, rider, driver, fare,ts, partitionpath from  dta order by uuid").show()

Vertica集成Apache Hudi重磅使用指南

4.2 配置 Vertica 和 Apache HUDI 集成

在 vertica 中创建一个外部表,其中包含来自 S3 上 Hudi 表的数据。 我们创建了“旅行”表。

CREATE EXTERNAL TABLE Trips
(
_hoodie_commit_time TimestampTz,
uuid varchar,
rider varchar,
driver varchar,
fare int,
ts varchar,
partitionpath varchar
)
AS COPY FROM
's3a://apachehudi/parquet/vertica/*/*.parquet' PARQUET;

运行以下命令以验证正在读取外部表:

Vertica集成Apache Hudi重磅使用指南

4.3 如何让 Vertica 查看更改的数据

以下部分包含为查看 Vertica 中更改的数据而执行的一些操作的示例。

4.3.1 写入数据

在这个例子中,我们使用 Scala 在 Apache spark 中运行了以下命令并附加了一些数据:

val df2 = Seq(
("fff","r6","d6",50,"India","20211005")
).toDF("uuid", "rider", "driver","fare","partitionpath","ts")

运行以下命令将此数据附加到 S3 上的 Hudi 表中:

df2.write.format("org.apache.hudi").
options(getQuickstartWriteConfigs).
option(PRECOMBINE_FIELD_OPT_KEY, "ts").
option(RECORDKEY_FIELD_OPT_KEY, "uuid").
option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath").
option(TABLE_NAME, tableName).
mode(Append).
save(basePath)

4.3.2 更新数据

在这个例子中,我们更新了一条 Hudi 表的记录。 需要导入数据以触发并更新数据:

val df3 = Seq(
("aaa","r1","d1",100,"US","20211001"),
("eee","r5","d5",500,"India","20211001")
).toDF("uuid", "rider", "driver","fare","partitionpath","ts")

运行以下命令将数据更新到 S3 上的 HUDI 表:

df3.write.format("org.apache.hudi").
options(getQuickstartWriteConfigs).
option(PRECOMBINE_FIELD_OPT_KEY, "ts").
option(RECORDKEY_FIELD_OPT_KEY, "uuid").
option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath").
option(TABLE_NAME, tableName).
mode(Append).
save(basePath)

以下是 spark.sql 的输出:

Vertica集成Apache Hudi重磅使用指南

以下是 Vertica 输出:

Vertica集成Apache Hudi重磅使用指南

4.3.3 创建和查看数据的历史快照

执行以下指向特定时间戳的 spark 命令:

val dd = spark.read
.format("hudi")
.option("as.of.instant", "20211007092600")
.load(basePath)

使用以下命令将数据写入 S3 中的 parquet:

dd.write.parquet("s3a://apachehudi/parquet/p2")

在此示例中,我们正在读取截至“20211007092600”日期的 Hudi 表快照。

dd.show

Vertica集成Apache Hudi重磅使用指南

通过在 parquet 文件上创建外部表从 Vertica 执行命令。

Vertica集成Apache Hudi重磅使用指南

以上就是Vertica集成Apache Hudi重磅使用指南的详细内容,更多关于Vertica集成Apache Hudi的资料请关注三水点靠木其它相关文章!

Servers 相关文章推荐
查看nginx配置文件路径和资源文件路径的方法
Mar 31 Servers
Nginx反爬虫策略,防止UA抓取网站
Mar 31 Servers
详解nginx.conf 中 root 目录设置问题
Apr 01 Servers
教你利用Nginx 服务搭建子域环境提升二维地图加载性能的步骤
Sep 25 Servers
nginx配置之并发频次限制
Apr 18 Servers
解决Windows Server2012 R2 无法安装 .NET Framework 3.5
Apr 29 Servers
详解ZABBIX监控ESXI主机的问题
Jun 21 Servers
Windows7下FTP搭建图文教程
Aug 05 Servers
阿里云服务器(windows)手动部署FTP站点详细教程
Aug 05 Servers
Win10系统搭建ftp文件服务器详细教程
Aug 05 Servers
Zabbix6通过ODBC方式监控Oracle 19C的详细过程
Sep 23 Servers
ubuntu20.04虚拟机无法上网的问题及解决
Dec 24 Servers
Nginx虚拟主机的配置步骤过程全解
Mar 31 #Servers
Tomcat用户管理的优化配置详解
Kubernetes关键组件与结构组成介绍
配置Kubernetes外网访问集群
CKAD认证中部署k8s并配置Calico插件
Mar 31 #Servers
使用kubeadm命令行工具创建kubernetes集群
Mar 31 #Servers
Minikube搭建Kubernetes集群
You might like
php 求质素(素数) 的实现代码
2011/04/12 PHP
Laravel 5.4向IoC容器中添加自定义类的方法示例
2017/08/15 PHP
php实现通过stomp协议连接ActiveMQ操作示例
2020/02/23 PHP
JavaScript高级程序设计阅读笔记(六) ECMAScript中的运算符(二)
2012/02/27 Javascript
深入理解JavaScript系列(30):设计模式之外观模式详解
2015/03/03 Javascript
Javascript数据结构与算法之列表详解
2015/03/12 Javascript
使用jQuery mobile库检测url绝对地址和相对地址的方法
2015/12/04 Javascript
jQuery的选择器中的通配符[id^='code']或[name^='code']及jquery选择器总结
2015/12/24 Javascript
angularjs封装bootstrap时间插件datetimepicker
2016/06/20 Javascript
JavaScript 巧学巧用
2017/05/23 Javascript
jQuery实现选中行变色效果(实例讲解)
2017/07/06 jQuery
nodejs结合socket.io实现websocket通信功能的方法
2018/01/12 NodeJs
postman自定义函数实现 时间函数的思路详解
2019/04/17 Javascript
vue + typescript + 极验登录验证的实现方法
2019/06/27 Javascript
JQuery实现ul中添加LI和删除指定的Li元素功能完整示例
2019/10/16 jQuery
微信小程序实现Swiper轮播图效果
2019/11/22 Javascript
老生常谈python函数参数的区别(必看篇)
2017/05/29 Python
flask-restful使用总结
2018/12/04 Python
一篇文章彻底搞懂Python中可迭代(Iterable)、迭代器(Iterator)与生成器(Generator)的概念
2019/05/13 Python
python飞机大战pygame游戏之敌机出场实现方法详解
2019/12/17 Python
python删除文件、清空目录的实现方法
2020/09/23 Python
TensorFlow2.0使用keras训练模型的实现
2021/02/20 Python
CSS3实现各种图形的示例代码
2016/10/19 HTML / CSS
初中生学习生活的自我评价
2013/11/20 职场文书
体育教师个人的自我评价
2014/02/16 职场文书
励志演讲稿范文
2014/04/29 职场文书
财产分割协议书范本
2014/11/03 职场文书
2014年稽查工作总结
2014/12/20 职场文书
创先争优承诺书
2015/01/20 职场文书
2015教师个人工作总结范文
2015/03/31 职场文书
公司清洁工岗位职责
2015/04/15 职场文书
普通员工辞职信范文
2015/05/12 职场文书
房屋产权证明书
2015/06/19 职场文书
读《瓦尔登湖》有感:每个人都需要一个瓦尔登湖
2019/10/17 职场文书
Python如何把不同类型数据的json序列化
2021/04/30 Python
微软Win11有哪些隐藏功能? windows11多个功能汇总
2021/11/21 数码科技