Vertica集成Apache Hudi重磅使用指南


Posted in Servers onMarch 31, 2022

1. 摘要

本文演示了使用外部表集成 Vertica 和 Apache Hudi。 在演示中我们使用 Spark 上的 Apache Hudi 将数据摄取到 S3 中,并使用 Vertica 外部表访问这些数据。

2. Apache Hudi介绍

Apache Hudi 是一种变更数据捕获 (CDC) 工具,可在不同时间线将事务记录在表中。 Hudi 代表 Hadoop Upserts Deletes and Incrementals,是一个开源框架。 Hudi 提供 ACID 事务、可扩展的元数据处理,并统一流和批处理数据处理。
以下流程图说明了该过程。 使用安装在 Apache Spark 上的 Hudi 将数据处理到 S3,并从 Vertica 外部表中读取 S3 中的数据更改。

Vertica集成Apache Hudi重磅使用指南

3. 环境准备

Apache Spark 环境。 使用具有 1 个 Master 和 3 个 Worker 的 4 节点集群进行了测试。 按照在多节点集群上设置 Apache Spark 中的说明安装 Spark 集群环境。 启动 Spark 多节点集群。

Vertica 分析数据库。 使用 Vertica Enterprise 11.0.0 进行了测试。

AWS S3 或 S3 兼容对象存储。 使用 MinIO 作为 S3 存储桶进行了测试。

需要以下 jar 文件。将 jar 复制到 Spark 机器上任何需要的位置,将这些 jar 文件放在 /opt/spark/jars 中。

Hadoop - hadoop-aws-2.7.3.jar

AWS - aws-java-sdk-1.7.4.jar

在 Vertica 数据库中运行以下命令来设置访问存储桶的 S3 参数:

SELECT SET_CONFIG_PARAMETER('AWSAuth', 'accesskey:secretkey');
SELECT SET_CONFIG_PARAMETER('AWSRegion','us-east-1');
SELECT SET_CONFIG_PARAMETER('AWSEndpoint','<S3_IP>:9000');
SELECT SET_CONFIG_PARAMETER('AWSEnableHttps','0');

endpoint可能会有所不同,具体取决于 S3 存储桶位置选择的 S3 对象存储。

4. Vertica和Apache Hudi集成

要将 Vertica 与 Apache Hudi 集成,首先需要将 Apache Spark 与 Apache Hudi 集成,配置 jars,以及访问 AWS S3 的连接。 其次,将 Vertica 连接到 Apache Hudi。 然后对 S3 存储桶执行 Insert、Append、Update 等操作。
按照以下部分中的步骤将数据写入 Vertica。
在 Apache Spark 上配置 Apache Hudi 和 AWS S3
配置 Vertica 和 Apache Hudi 集成

4.1 在 Apache Spark 上配置 Apache Hudi 和 AWS S3

在 Apache Spark 机器中运行以下命令。
这会下载 Apache Hudi 包,配置 jar 文件,以及 AWS S3

/opt/spark/bin/spark-shell \
--conf "spark.serializer=org.apache.spark.serializer.KryoSerializer"\--packages org.apache.hudi:hudi-spark3-bundle_2.12:0.9.0,org.apache.spark:spark-avro_2.12:3.0.1

导入Hudi的读、写等所需的包:

import org.apache.hudi.QuickstartUtils._
import scala.collection.JavaConversions._
import org.apache.spark.sql.SaveMode._
import org.apache.hudi.DataSourceReadOptions._
import org.apache.hudi.DataSourceWriteOptions._
import org.apache.hudi.config.HoodieWriteConfig._

使用以下命令根据需要配置 Minio 访问密钥、Secret key、Endpoint 和其他 S3A 算法和路径。

spark.sparkContext.hadoopConfiguration.set("fs.s3a.access.key", "*****")
spark.sparkContext.hadoopConfiguration.set("fs.s3a.secret.key", "*****")
spark.sparkContext.hadoopConfiguration.set("fs.s3a.endpoint", "http://XXXX.9000")
spark.sparkContext.hadoopConfiguration.set("fs.s3a.path.style.access", "true")
sc.hadoopConfiguration.set("fs.s3a.signing-algorithm","S3SignerType")

创建变量来存储 MinIO 的表名和 S3 路径。

val tableName = “Trips”
val basepath = “s3a://apachehudi/vertica/”

准备数据,使用 Scala 在 Apache spark 中创建示例数据

val df = Seq(
("aaa","r1","d1",10,"US","20211001"),
("bbb","r2","d2",20,"Europe","20211002"),
("ccc","r3","d3",30,"India","20211003"),
("ddd","r4","d4",40,"Europe","20211004"),
("eee","r5","d5",50,"India","20211005"),
).toDF("uuid", "rider", "driver","fare","partitionpath","ts")

将数据写入 AWS S3 并验证此数据

df.write.format("org.apache.hudi").
options(getQuickstartWriteConfigs).
option(PRECOMBINE_FIELD_OPT_KEY, "ts").
option(RECORDKEY_FIELD_OPT_KEY, "uuid").
option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath").
option(TABLE_NAME, tableName).
mode(Overwrite).
save(basePath)

使用 Scala 运行以下命令以验证是否从 S3 存储桶中正确读取数据。

spark.read.format("hudi").load(basePath).createOrReplaceTempView("dta")
spark.sql("select _hoodie_commit_time, uuid, rider, driver, fare,ts, partitionpath from  dta order by uuid").show()

Vertica集成Apache Hudi重磅使用指南

4.2 配置 Vertica 和 Apache HUDI 集成

在 vertica 中创建一个外部表,其中包含来自 S3 上 Hudi 表的数据。 我们创建了“旅行”表。

CREATE EXTERNAL TABLE Trips
(
_hoodie_commit_time TimestampTz,
uuid varchar,
rider varchar,
driver varchar,
fare int,
ts varchar,
partitionpath varchar
)
AS COPY FROM
's3a://apachehudi/parquet/vertica/*/*.parquet' PARQUET;

运行以下命令以验证正在读取外部表:

Vertica集成Apache Hudi重磅使用指南

4.3 如何让 Vertica 查看更改的数据

以下部分包含为查看 Vertica 中更改的数据而执行的一些操作的示例。

4.3.1 写入数据

在这个例子中,我们使用 Scala 在 Apache spark 中运行了以下命令并附加了一些数据:

val df2 = Seq(
("fff","r6","d6",50,"India","20211005")
).toDF("uuid", "rider", "driver","fare","partitionpath","ts")

运行以下命令将此数据附加到 S3 上的 Hudi 表中:

df2.write.format("org.apache.hudi").
options(getQuickstartWriteConfigs).
option(PRECOMBINE_FIELD_OPT_KEY, "ts").
option(RECORDKEY_FIELD_OPT_KEY, "uuid").
option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath").
option(TABLE_NAME, tableName).
mode(Append).
save(basePath)

4.3.2 更新数据

在这个例子中,我们更新了一条 Hudi 表的记录。 需要导入数据以触发并更新数据:

val df3 = Seq(
("aaa","r1","d1",100,"US","20211001"),
("eee","r5","d5",500,"India","20211001")
).toDF("uuid", "rider", "driver","fare","partitionpath","ts")

运行以下命令将数据更新到 S3 上的 HUDI 表:

df3.write.format("org.apache.hudi").
options(getQuickstartWriteConfigs).
option(PRECOMBINE_FIELD_OPT_KEY, "ts").
option(RECORDKEY_FIELD_OPT_KEY, "uuid").
option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath").
option(TABLE_NAME, tableName).
mode(Append).
save(basePath)

以下是 spark.sql 的输出:

Vertica集成Apache Hudi重磅使用指南

以下是 Vertica 输出:

Vertica集成Apache Hudi重磅使用指南

4.3.3 创建和查看数据的历史快照

执行以下指向特定时间戳的 spark 命令:

val dd = spark.read
.format("hudi")
.option("as.of.instant", "20211007092600")
.load(basePath)

使用以下命令将数据写入 S3 中的 parquet:

dd.write.parquet("s3a://apachehudi/parquet/p2")

在此示例中,我们正在读取截至“20211007092600”日期的 Hudi 表快照。

dd.show

Vertica集成Apache Hudi重磅使用指南

通过在 parquet 文件上创建外部表从 Vertica 执行命令。

Vertica集成Apache Hudi重磅使用指南

以上就是Vertica集成Apache Hudi重磅使用指南的详细内容,更多关于Vertica集成Apache Hudi的资料请关注三水点靠木其它相关文章!

Servers 相关文章推荐
fastdfs+nginx集群搭建的实现
Mar 31 Servers
Nginx配置https原理及实现过程详解
Mar 31 Servers
nginx结合openssl实现https的方法
Jul 25 Servers
nginx中proxy_pass各种用法详解
Nov 07 Servers
nginx内存池源码解析
Nov 20 Servers
Docker下安装Oracle19c
Apr 13 Servers
微信告警的zabbix监控系统 监控整个NGINX集群
Apr 18 Servers
讨论nginx location 顺序问题
May 30 Servers
利用Apache Common将java对象池化的问题
Jun 16 Servers
解决Git推送错误non-fast-forward的方法
Jun 25 Servers
在虚拟机中安装windows server 2008的图文教程
Jun 28 Servers
解决ubuntu安装软件时,status-code=409报错的问题
Dec 24 Servers
Nginx虚拟主机的配置步骤过程全解
Mar 31 #Servers
Tomcat用户管理的优化配置详解
Kubernetes关键组件与结构组成介绍
配置Kubernetes外网访问集群
CKAD认证中部署k8s并配置Calico插件
Mar 31 #Servers
使用kubeadm命令行工具创建kubernetes集群
Mar 31 #Servers
Minikube搭建Kubernetes集群
You might like
1.PHP简介
2006/10/09 PHP
PHP include任意文件或URL介绍
2014/04/29 PHP
PHP使用mysqli操作MySQL数据库的简单方法
2017/02/04 PHP
php 输出缓冲 Output Control用法实例详解
2020/03/03 PHP
thinkphp框架实现路由重定义简化url访问地址的方法分析
2020/04/04 PHP
flexigrid 参数说明
2010/11/23 Javascript
jQuery中获取checkbox选中项等操作及注意事项
2013/11/24 Javascript
IE8中使用javascript动态加载CSS的解决方法
2014/06/17 Javascript
Javascript基础教程之函数对象和属性
2015/01/18 Javascript
js实现三张图(文)片一起切换的banner焦点图
2015/08/25 Javascript
基于Node.js实现nodemailer邮件发送
2016/01/26 Javascript
使用NodeJs 开发微信公众号(三)微信事件交互实例
2016/03/02 NodeJs
Vue.js bootstrap前端实现分页和排序
2017/03/10 Javascript
jQuery插件HighCharts实现气泡图效果示例【附demo源码】
2017/03/13 Javascript
jQuery Json数据格式排版高亮插件json-viewer.js使用方法详解
2017/06/12 jQuery
详解前端路由实现与react-router使用姿势
2017/08/07 Javascript
vue实现仿淘宝结账页面实例代码
2017/11/08 Javascript
jQuery表单校验插件validator使用方法详解
2020/02/18 jQuery
[03:49]2016完美“圣”典风云人物:AMS专访
2016/12/06 DOTA
[01:47]2018年度DOTA2最具人气解说-完美盛典
2018/12/16 DOTA
Python的Bottle框架中获取制定cookie的教程
2015/04/24 Python
实例讲解Python设计模式编程之工厂方法模式的使用
2016/03/02 Python
在Pycharm中调试Django项目程序的操作方法
2019/07/17 Python
Python爬虫爬取电影票房数据及图表展示操作示例
2020/03/27 Python
canvas之万花筒效果的简单实现(推荐)
2016/08/16 HTML / CSS
elf彩妆英国官网:e.l.f. Cosmetics英国(美国平价彩妆品牌)
2017/11/02 全球购物
台湾三立电视电商平台:电电购
2019/09/09 全球购物
编辑求职信样本
2013/12/16 职场文书
机械设计职业生涯规划书
2013/12/27 职场文书
办理生育手续介绍信
2014/01/14 职场文书
认识深刻的检讨书
2014/02/16 职场文书
《最佳路径》教学反思
2014/04/13 职场文书
私营公司诉讼代理委托书范本
2014/09/13 职场文书
2016年社区党支部公开承诺书
2016/03/25 职场文书
史上最全书信经典范文大全(建议收藏)
2019/07/10 职场文书
AJAX实现省市县三级联动效果
2021/10/16 Javascript