pytorch中F.avg_pool1d()和F.avg_pool2d()的使用操作


Posted in Python onMay 22, 2021

F.avg_pool1d()数据是三维输入

input维度: (batch_size,channels,width)channel可以看成高度

kenerl维度:(一维:表示width的跨度)channel和输入的channel一致可以认为是矩阵的高度

假设kernel_size=2,则每俩列相加求平均,stride默认和kernel_size保持一致,越界则丢弃(下面表示1,2列和3,4列相加求平均)

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input)
m = F.avg_pool1d(input,kernel_size=2)
m

tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.0000, 1.0000],
         [1.0000, 1.0000],
         [0.0000, 0.5000],
         [1.0000, 1.0000],
         [1.0000, 1.0000]]])

假设kenerl_size=3,表示前3列相加求平均,后面的不足3列丢弃

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input)
m = F.avg_pool1d(input,kernel_size=3)
m
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.],
         [1.],
         [0.],
         [1.],
         [1.]]])

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input)
m = F.avg_pool1d(input,kernel_size=4)
m
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.0000],
         [1.0000],
         [0.2500],
         [1.0000],
         [1.0000]]])

假设stride=1每次移动一个步伐

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input)
m = F.avg_pool1d(input,kernel_size=2,stride=1)
m
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.0000, 1.0000, 1.0000, 1.0000],
         [1.0000, 1.0000, 1.0000, 1.0000],
         [0.0000, 0.0000, 0.5000, 1.0000],
         [1.0000, 1.0000, 1.0000, 1.0000],
         [1.0000, 1.0000, 1.0000, 1.0000]]])
 
input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input)
m = F.avg_pool1d(input,kernel_size=4,stride=1)
m
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.0000, 1.0000],
         [1.0000, 1.0000],
         [0.2500, 0.5000],
         [1.0000, 1.0000],
         [1.0000, 1.0000]]])

F.avg_pool2d()数据是四维输入

input维度: (batch_size,channels,height,width)

kenerl维度:(二维:表示width的跨度)channel和输入的channle一致,如果数据是三维,则channel为1.(如果只写一个数n,kenerl=(n,n))

stride默认和kenerl一致,这是个二维的,所以在height和width上均和kenerl一致,越界同样丢弃。

跟cnn卷积一致

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input.size())
print(input)
m = F.avg_pool2d(input,kernel_size=(4,4))
m
torch.Size([1, 5, 5])
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[0.8125]]])

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input.size())
print(input)
m = F.avg_pool2d(input,kernel_size=(4,4),stride=1)
m
torch.Size([1, 5, 5])
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[0.8125, 0.8750],
         [0.8125, 0.8750]]])

如果求列的平均kenerl=(1,5),此时默认stride=(1,5)

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input.size())
print(input)
m = F.avg_pool2d(input,kernel_size=(1,5))
m
torch.Size([1, 5, 5])
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.0000],
         [1.0000],
         [0.4000],
         [1.0000],
         [1.0000]]])

如果求行的平均kenerl=(5,1),此时默认stride=(5,1),用卷积的概念取思考

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input.size())
print(input)
m = F.avg_pool2d(input,kernel_size=(5,1))
m
torch.Size([1, 5, 5])
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[0.8000, 0.8000, 0.8000, 1.0000, 1.0000]]])

对于四维的数据,channel默认和输入一致

input=torch.randn(10,3,4,4)
m=F.avg_pool2d(input,(4,4))
print(m.size())
torch.Size([10, 3, 1, 1])

补充:PyTorch中AdaptiveAvgPool函数解析

自适应池化(AdaptiveAvgPool1d):

对输入信号,提供1维的自适应平均池化操作 对于任何输入大小的输入,可以将输出尺寸指定为H*W,但是输入和输出特征的数目不会变化。

torch.nn.AdaptiveAvgPool1d(output_size)
#output_size:输出尺寸

对输入信号,提供1维的自适应平均池化操作 对于任何输入大小的输入,可以将输出尺寸指定为H*W,但是输入和输出特征的数目不会变化。

# target output size of 5
m = nn.AdaptiveAvgPool1d(5)
input = autograd.Variable(torch.randn(1, 64, 8))
output = m(input)

自适应池化(AdaptiveAvgPool2d):

class torch.nn.AdaptiveAvgPool2d(output_size)

对输入信号,提供2维的自适应平均池化操作 对于任何输入大小的输入,可以将输出尺寸指定为H*W,但是输入和输出特征的数目不会变化。

参数:

output_size: 输出信号的尺寸,可以用(H,W)表示H*W的输出,也可以使用耽搁数字H表示H*H大小的输出

# target output size of 5x7
m = nn.AdaptiveAvgPool2d((5,7))
input = autograd.Variable(torch.randn(1, 64, 8, 9))
# target output size of 7x7 (square)
m = nn.AdaptiveAvgPool2d(7)
input = autograd.Variable(torch.randn(1, 64, 10, 9))
output = m(input)

自适应池化的数学解释:

pytorch中F.avg_pool1d()和F.avg_pool2d()的使用操作

pytorch中F.avg_pool1d()和F.avg_pool2d()的使用操作

以上为个人经验,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python中操作文件之write()方法的使用教程
May 25 Python
Python使用poplib模块和smtplib模块收发电子邮件的教程
Jul 02 Python
Python中scatter函数参数及用法详解
Nov 08 Python
详解appium+python 启动一个app步骤
Dec 20 Python
Python内置模块hashlib、hmac与uuid用法分析
Feb 12 Python
Python3.6.0+opencv3.3.0人脸检测示例
May 25 Python
对Python中画图时候的线类型详解
Jul 07 Python
Django  ORM 练习题及答案
Jul 19 Python
Python实现时间序列可视化的方法
Aug 06 Python
基于K.image_data_format() == 'channels_first' 的理解
Jun 29 Python
Python sqlalchemy时间戳及密码管理实现代码详解
Aug 01 Python
详解OpenCV获取高动态范围(HDR)成像
Apr 29 Python
用python实现监控视频人数统计
Python基础之进程详解
如何在C++中调用Python
May 21 #Python
python 定义函数 返回值只取其中一个的实现
May 21 #Python
Python+Appium实现自动抢微信红包
写好Python代码的几条重要技巧
windows安装python超详细图文教程
You might like
从MySQL数据库表中取出随机数据的代码
2007/09/05 PHP
php更新修改excel中的内容实例代码
2014/02/26 PHP
php实现递归的三种基本方式
2020/07/04 PHP
PHP的介绍以及优势详细分析
2019/09/05 PHP
JavaScript 10件让人费解的事情
2010/02/15 Javascript
理解JSON:3分钟课程
2011/10/28 Javascript
jQuery中.live()方法的用法深入解析
2013/12/30 Javascript
javascript:json数据的页面绑定示例代码
2014/01/26 Javascript
jQuery手机浏览器中拖拽动作的艰难性分析
2015/02/04 Javascript
Bootstrap使用基础教程详解
2016/09/05 Javascript
D3.js实现文本的换行详解
2016/10/14 Javascript
jQuery实现表格与ckeckbox的全选与单选功能
2016/11/24 Javascript
Bootstrap BootstrapDialog使用详解
2017/02/17 Javascript
Webpack+Vue如何导入Jquery和Jquery的第三方插件
2017/02/20 Javascript
微信小程序图片宽100%显示并且不变形
2017/06/21 Javascript
解决Webpack 热部署检测不到文件变化的问题
2018/02/22 Javascript
原生JS实现前端本地文件上传
2018/09/08 Javascript
vue实现移动端input上传视频、音频
2020/08/18 Javascript
[02:44]完美大师赛主赛事淘汰赛第二日观众采访
2017/11/24 DOTA
[49:15]DOTA2-DPC中国联赛 正赛 CDEC vs XG BO3 第二场 1月19日
2021/03/11 DOTA
[01:10:30]DOTA2-DPC中国联赛正赛 Dragon vs Dynasty BO3 第一场 3月4日
2021/03/11 DOTA
Python def函数的定义、使用及参数传递实现代码
2014/08/10 Python
实例讲解Python编程中@property装饰器的用法
2016/06/20 Python
Pycharm保存不能自动同步到远程服务器的解决方法
2019/06/27 Python
python爬虫 猫眼电影和电影天堂数据csv和mysql存储过程解析
2019/09/05 Python
python使用 __init__初始化操作简单示例
2019/09/26 Python
python 实现将list转成字符串,中间用空格隔开
2019/12/25 Python
圣诞树世界:Christmas Tree World
2019/12/10 全球购物
生日派对邀请函
2014/01/13 职场文书
摄影助理岗位职责
2014/02/07 职场文书
致接力运动员广播稿
2014/02/17 职场文书
财务管理职业生涯规划书
2014/02/26 职场文书
医院搬迁方案
2014/06/14 职场文书
优秀三好学生事迹材料
2014/08/31 职场文书
教师个人事迹材料
2014/12/17 职场文书
一文搞懂PHP中的抽象类和接口
2022/05/25 PHP