pytorch中F.avg_pool1d()和F.avg_pool2d()的使用操作


Posted in Python onMay 22, 2021

F.avg_pool1d()数据是三维输入

input维度: (batch_size,channels,width)channel可以看成高度

kenerl维度:(一维:表示width的跨度)channel和输入的channel一致可以认为是矩阵的高度

假设kernel_size=2,则每俩列相加求平均,stride默认和kernel_size保持一致,越界则丢弃(下面表示1,2列和3,4列相加求平均)

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input)
m = F.avg_pool1d(input,kernel_size=2)
m

tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.0000, 1.0000],
         [1.0000, 1.0000],
         [0.0000, 0.5000],
         [1.0000, 1.0000],
         [1.0000, 1.0000]]])

假设kenerl_size=3,表示前3列相加求平均,后面的不足3列丢弃

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input)
m = F.avg_pool1d(input,kernel_size=3)
m
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.],
         [1.],
         [0.],
         [1.],
         [1.]]])

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input)
m = F.avg_pool1d(input,kernel_size=4)
m
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.0000],
         [1.0000],
         [0.2500],
         [1.0000],
         [1.0000]]])

假设stride=1每次移动一个步伐

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input)
m = F.avg_pool1d(input,kernel_size=2,stride=1)
m
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.0000, 1.0000, 1.0000, 1.0000],
         [1.0000, 1.0000, 1.0000, 1.0000],
         [0.0000, 0.0000, 0.5000, 1.0000],
         [1.0000, 1.0000, 1.0000, 1.0000],
         [1.0000, 1.0000, 1.0000, 1.0000]]])
 
input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input)
m = F.avg_pool1d(input,kernel_size=4,stride=1)
m
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.0000, 1.0000],
         [1.0000, 1.0000],
         [0.2500, 0.5000],
         [1.0000, 1.0000],
         [1.0000, 1.0000]]])

F.avg_pool2d()数据是四维输入

input维度: (batch_size,channels,height,width)

kenerl维度:(二维:表示width的跨度)channel和输入的channle一致,如果数据是三维,则channel为1.(如果只写一个数n,kenerl=(n,n))

stride默认和kenerl一致,这是个二维的,所以在height和width上均和kenerl一致,越界同样丢弃。

跟cnn卷积一致

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input.size())
print(input)
m = F.avg_pool2d(input,kernel_size=(4,4))
m
torch.Size([1, 5, 5])
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[0.8125]]])

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input.size())
print(input)
m = F.avg_pool2d(input,kernel_size=(4,4),stride=1)
m
torch.Size([1, 5, 5])
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[0.8125, 0.8750],
         [0.8125, 0.8750]]])

如果求列的平均kenerl=(1,5),此时默认stride=(1,5)

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input.size())
print(input)
m = F.avg_pool2d(input,kernel_size=(1,5))
m
torch.Size([1, 5, 5])
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.0000],
         [1.0000],
         [0.4000],
         [1.0000],
         [1.0000]]])

如果求行的平均kenerl=(5,1),此时默认stride=(5,1),用卷积的概念取思考

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input.size())
print(input)
m = F.avg_pool2d(input,kernel_size=(5,1))
m
torch.Size([1, 5, 5])
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[0.8000, 0.8000, 0.8000, 1.0000, 1.0000]]])

对于四维的数据,channel默认和输入一致

input=torch.randn(10,3,4,4)
m=F.avg_pool2d(input,(4,4))
print(m.size())
torch.Size([10, 3, 1, 1])

补充:PyTorch中AdaptiveAvgPool函数解析

自适应池化(AdaptiveAvgPool1d):

对输入信号,提供1维的自适应平均池化操作 对于任何输入大小的输入,可以将输出尺寸指定为H*W,但是输入和输出特征的数目不会变化。

torch.nn.AdaptiveAvgPool1d(output_size)
#output_size:输出尺寸

对输入信号,提供1维的自适应平均池化操作 对于任何输入大小的输入,可以将输出尺寸指定为H*W,但是输入和输出特征的数目不会变化。

# target output size of 5
m = nn.AdaptiveAvgPool1d(5)
input = autograd.Variable(torch.randn(1, 64, 8))
output = m(input)

自适应池化(AdaptiveAvgPool2d):

class torch.nn.AdaptiveAvgPool2d(output_size)

对输入信号,提供2维的自适应平均池化操作 对于任何输入大小的输入,可以将输出尺寸指定为H*W,但是输入和输出特征的数目不会变化。

参数:

output_size: 输出信号的尺寸,可以用(H,W)表示H*W的输出,也可以使用耽搁数字H表示H*H大小的输出

# target output size of 5x7
m = nn.AdaptiveAvgPool2d((5,7))
input = autograd.Variable(torch.randn(1, 64, 8, 9))
# target output size of 7x7 (square)
m = nn.AdaptiveAvgPool2d(7)
input = autograd.Variable(torch.randn(1, 64, 10, 9))
output = m(input)

自适应池化的数学解释:

pytorch中F.avg_pool1d()和F.avg_pool2d()的使用操作

pytorch中F.avg_pool1d()和F.avg_pool2d()的使用操作

以上为个人经验,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python 实现数组list 添加、修改、删除的方法
Apr 04 Python
PyQt5 pyqt多线程操作入门
May 05 Python
Python装饰器知识点补充
May 28 Python
Python面向对象之接口、抽象类与多态详解
Aug 27 Python
python将一组数分成每3个一组的实例
Nov 14 Python
解决Python中定时任务线程无法自动退出的问题
Feb 18 Python
2019 Python最新面试题及答案16道题
Apr 11 Python
Python实现操纵控制windows注册表的方法分析
May 24 Python
利用Python实现Shp格式向GeoJSON的转换方法
Jul 09 Python
Python3的socket使用方法详解
Feb 18 Python
Python 测试框架unittest和pytest的优劣
Sep 26 Python
pycharm最新激活码有效期至2100年(亲测可用)
Feb 05 Python
用python实现监控视频人数统计
Python基础之进程详解
如何在C++中调用Python
May 21 #Python
python 定义函数 返回值只取其中一个的实现
May 21 #Python
Python+Appium实现自动抢微信红包
写好Python代码的几条重要技巧
windows安装python超详细图文教程
You might like
PHP中strtotime函数使用方法详解
2011/11/27 PHP
php生成随机密码自定义函数代码(简单快速)
2014/05/10 PHP
ThinkPHP采用原生query实现关联查询left join实例
2014/12/02 PHP
PHP 以POST方式提交XML、获取XML,解析XML详解及实例
2016/10/26 PHP
thinkphp框架实现路由重定义简化url访问地址的方法分析
2020/04/04 PHP
基于jquery实现状态限定编辑的代码
2012/02/11 Javascript
利用Javascript判断操作系统的类型实现不同操作系统下的兼容性
2013/01/29 Javascript
可兼容IE的获取及设置cookie的jquery.cookie函数方法
2013/09/02 Javascript
浅析js预加载/延迟加载
2014/09/25 Javascript
js判断登陆用户名及密码是否为空的简单实例
2016/05/16 Javascript
鼠标拖动改变DIV等网页元素的大小的实现方法
2017/07/06 Javascript
JavaScript原生实现观察者模式的示例
2017/12/15 Javascript
基于Vuejs的搜索匹配功能实现方法
2018/03/03 Javascript
Vue实现PopupWindow组件详解
2018/04/28 Javascript
微信小程序页面缩放式侧滑效果的实现代码
2018/11/15 Javascript
微信小程序带动画弹窗组件使用方法详解
2018/11/27 Javascript
详解Vue 数据更新了但页面没有更新的 7 种情况汇总及延伸总结
2020/05/28 Javascript
weui上传多图片,压缩,base64编码的示例代码
2020/06/22 Javascript
[04:52]2015国际邀请赛LGD战队晋级之路
2015/08/14 DOTA
[01:04:05]Mineski vs TNC 2019国际邀请赛小组赛 BO2 第一场 8.15
2019/08/16 DOTA
使用python检测手机QQ在线状态的脚本代码
2013/02/10 Python
使用Python的Scrapy框架编写web爬虫的简单示例
2015/04/17 Python
Python编写电话薄实现增删改查功能
2016/05/07 Python
Linux(Redhat)安装python3.6虚拟环境(推荐)
2018/05/05 Python
Python读取txt某几列绘图的方法
2018/10/14 Python
浅谈Scrapy网络爬虫框架的工作原理和数据采集
2019/02/07 Python
PyQt5的PyQtGraph实践系列3之实时数据更新绘制图形
2019/05/13 Python
完美解决keras保存好的model不能成功加载问题
2020/06/11 Python
Django数据模型中on_delete使用详解
2020/11/30 Python
HTML5中使用postMessage实现Ajax跨域请求的方法
2016/04/19 HTML / CSS
瀑布模型都有哪些优缺点
2014/06/23 面试题
农村婚礼主持词
2014/03/13 职场文书
2014基层党员批评与自我批评范文
2014/09/24 职场文书
校园安全广播稿范文
2014/09/25 职场文书
Python实现打乒乓小游戏
2021/09/25 Python
apache虚拟主机配置的三种方式(小结)
2022/07/23 Servers