pytorch中F.avg_pool1d()和F.avg_pool2d()的使用操作


Posted in Python onMay 22, 2021

F.avg_pool1d()数据是三维输入

input维度: (batch_size,channels,width)channel可以看成高度

kenerl维度:(一维:表示width的跨度)channel和输入的channel一致可以认为是矩阵的高度

假设kernel_size=2,则每俩列相加求平均,stride默认和kernel_size保持一致,越界则丢弃(下面表示1,2列和3,4列相加求平均)

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input)
m = F.avg_pool1d(input,kernel_size=2)
m

tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.0000, 1.0000],
         [1.0000, 1.0000],
         [0.0000, 0.5000],
         [1.0000, 1.0000],
         [1.0000, 1.0000]]])

假设kenerl_size=3,表示前3列相加求平均,后面的不足3列丢弃

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input)
m = F.avg_pool1d(input,kernel_size=3)
m
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.],
         [1.],
         [0.],
         [1.],
         [1.]]])

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input)
m = F.avg_pool1d(input,kernel_size=4)
m
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.0000],
         [1.0000],
         [0.2500],
         [1.0000],
         [1.0000]]])

假设stride=1每次移动一个步伐

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input)
m = F.avg_pool1d(input,kernel_size=2,stride=1)
m
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.0000, 1.0000, 1.0000, 1.0000],
         [1.0000, 1.0000, 1.0000, 1.0000],
         [0.0000, 0.0000, 0.5000, 1.0000],
         [1.0000, 1.0000, 1.0000, 1.0000],
         [1.0000, 1.0000, 1.0000, 1.0000]]])
 
input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input)
m = F.avg_pool1d(input,kernel_size=4,stride=1)
m
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.0000, 1.0000],
         [1.0000, 1.0000],
         [0.2500, 0.5000],
         [1.0000, 1.0000],
         [1.0000, 1.0000]]])

F.avg_pool2d()数据是四维输入

input维度: (batch_size,channels,height,width)

kenerl维度:(二维:表示width的跨度)channel和输入的channle一致,如果数据是三维,则channel为1.(如果只写一个数n,kenerl=(n,n))

stride默认和kenerl一致,这是个二维的,所以在height和width上均和kenerl一致,越界同样丢弃。

跟cnn卷积一致

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input.size())
print(input)
m = F.avg_pool2d(input,kernel_size=(4,4))
m
torch.Size([1, 5, 5])
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[0.8125]]])

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input.size())
print(input)
m = F.avg_pool2d(input,kernel_size=(4,4),stride=1)
m
torch.Size([1, 5, 5])
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[0.8125, 0.8750],
         [0.8125, 0.8750]]])

如果求列的平均kenerl=(1,5),此时默认stride=(1,5)

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input.size())
print(input)
m = F.avg_pool2d(input,kernel_size=(1,5))
m
torch.Size([1, 5, 5])
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.0000],
         [1.0000],
         [0.4000],
         [1.0000],
         [1.0000]]])

如果求行的平均kenerl=(5,1),此时默认stride=(5,1),用卷积的概念取思考

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input.size())
print(input)
m = F.avg_pool2d(input,kernel_size=(5,1))
m
torch.Size([1, 5, 5])
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[0.8000, 0.8000, 0.8000, 1.0000, 1.0000]]])

对于四维的数据,channel默认和输入一致

input=torch.randn(10,3,4,4)
m=F.avg_pool2d(input,(4,4))
print(m.size())
torch.Size([10, 3, 1, 1])

补充:PyTorch中AdaptiveAvgPool函数解析

自适应池化(AdaptiveAvgPool1d):

对输入信号,提供1维的自适应平均池化操作 对于任何输入大小的输入,可以将输出尺寸指定为H*W,但是输入和输出特征的数目不会变化。

torch.nn.AdaptiveAvgPool1d(output_size)
#output_size:输出尺寸

对输入信号,提供1维的自适应平均池化操作 对于任何输入大小的输入,可以将输出尺寸指定为H*W,但是输入和输出特征的数目不会变化。

# target output size of 5
m = nn.AdaptiveAvgPool1d(5)
input = autograd.Variable(torch.randn(1, 64, 8))
output = m(input)

自适应池化(AdaptiveAvgPool2d):

class torch.nn.AdaptiveAvgPool2d(output_size)

对输入信号,提供2维的自适应平均池化操作 对于任何输入大小的输入,可以将输出尺寸指定为H*W,但是输入和输出特征的数目不会变化。

参数:

output_size: 输出信号的尺寸,可以用(H,W)表示H*W的输出,也可以使用耽搁数字H表示H*H大小的输出

# target output size of 5x7
m = nn.AdaptiveAvgPool2d((5,7))
input = autograd.Variable(torch.randn(1, 64, 8, 9))
# target output size of 7x7 (square)
m = nn.AdaptiveAvgPool2d(7)
input = autograd.Variable(torch.randn(1, 64, 10, 9))
output = m(input)

自适应池化的数学解释:

pytorch中F.avg_pool1d()和F.avg_pool2d()的使用操作

pytorch中F.avg_pool1d()和F.avg_pool2d()的使用操作

以上为个人经验,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
布同自制Python函数帮助查询小工具
Mar 13 Python
从零学Python之hello world
May 21 Python
Python实现设置windows桌面壁纸代码分享
Mar 28 Python
python字符串中的单双引
Feb 16 Python
CentOS 7下Python 2.7升级至Python3.6.1的实战教程
Jul 06 Python
tensorflow获取变量维度信息
Mar 10 Python
Python 读取用户指令和格式化打印实现解析
Sep 02 Python
Pytorch 实现sobel算子的卷积操作详解
Jan 10 Python
python3 配置logging日志类的操作
Apr 08 Python
TensorFlow tf.nn.conv2d_transpose是怎样实现反卷积的
Apr 20 Python
Matplotlib animation模块实现动态图
Feb 25 Python
python实现双链表
May 25 Python
用python实现监控视频人数统计
Python基础之进程详解
如何在C++中调用Python
May 21 #Python
python 定义函数 返回值只取其中一个的实现
May 21 #Python
Python+Appium实现自动抢微信红包
写好Python代码的几条重要技巧
windows安装python超详细图文教程
You might like
php桌面中心(四) 数据显示
2007/03/11 PHP
基于PHP CURL用法的深入分析
2013/06/09 PHP
分享8个最佳的代码片段在线测试网站
2013/06/29 PHP
PHP时间戳 strtotime()使用方法和技巧
2013/10/29 PHP
Laravel 5框架学习之用户认证
2015/04/09 PHP
php实现的表单验证类完整示例
2019/08/13 PHP
PHP接口类(interface)的定义、特点和应用示例
2020/05/18 PHP
jQuery.Validate 使用笔记(jQuery Validation范例 )
2010/06/25 Javascript
web性能优化之javascript性能调优
2012/12/28 Javascript
利用jquery操作Radio方法小结
2014/10/20 Javascript
浅谈setTimeout 与 setInterval
2015/06/23 Javascript
基于JavaScript操作DOM常用的API小结
2015/12/01 Javascript
网页中右键功能的实现方法之contextMenu的使用
2017/02/20 Javascript
基于angular实现模拟微信小程序swiper组件
2017/06/11 Javascript
jQuery中each循环的跳出和结束实例
2017/08/16 jQuery
15个顶级开源JavaScript框架和库
2018/10/10 Javascript
利用百度echarts实现图表功能简单入门示例【附源码下载】
2019/06/10 Javascript
vue router 传参获取不到的解决方式
2019/11/13 Javascript
在Echarts图中给坐标轴加一个标识线markLine
2020/07/20 Javascript
python私有属性和方法实例分析
2015/01/15 Python
在Python的web框架中配置app的教程
2015/04/30 Python
详解 Python 与文件对象共事的实例
2017/09/11 Python
python3 pillow生成简单验证码图片的示例
2017/09/19 Python
python 高效去重复 支持GB级别大文件的示例代码
2018/11/08 Python
Python中bisect的用法及示例详解
2020/07/20 Python
利用python实现后端写网页(flask框架)
2021/02/28 Python
浅谈Html5移动端ios/Android兼容性总结
2018/06/01 HTML / CSS
Omio西班牙:全欧洲低价大巴、火车和航班搜索和比价
2017/02/11 全球购物
欧洲最大的拼图游戏商店:JigsawPuzzle.co.uk
2018/07/04 全球购物
Tenstickers法国:墙贴和装饰贴纸
2019/08/26 全球购物
美国最大的户外装备和服装购物网站:Backcountry
2019/10/15 全球购物
餐饮业的创业计划书范文
2013/12/26 职场文书
高三毕业典礼主持词
2014/03/27 职场文书
2014县政府领导班子对照检查材料思想汇报
2014/09/25 职场文书
党员个人承诺书
2015/04/27 职场文书
荒岛余生观后感
2015/06/09 职场文书