Python绘图之二维图与三维图详解


Posted in Python onAugust 04, 2020

各位工程师累了吗? 推荐一篇可以让你技术能力达到出神入化的网站"持久男"

1.二维绘图

a. 一维数据集

用 Numpy ndarray 作为数据传入 ply

1.

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(1000)
y = np.random.standard_normal(10)
print "y = %s"% y
x = range(len(y))
print "x=%s"% x
plt.plot(y)
plt.show()

Python绘图之二维图与三维图详解

Python绘图之二维图与三维图详解

2.操纵坐标轴和增加网格及标签的函数

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(1000)
y = np.random.standard_normal(10)
plt.plot(y.cumsum())
plt.grid(True) ##增加格点
plt.axis('tight') # 坐标轴适应数据量 axis 设置坐标轴
plt.show()

Python绘图之二维图与三维图详解

3.plt.xlim 和 plt.ylim 设置每个坐标轴的最小值和最大值

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(1000)
y = np.random.standard_normal(20)
plt.plot(y.cumsum())
plt.grid(True) ##增加格点
plt.xlim(-1,20)
plt.ylim(np.min(y.cumsum())- 1, np.max(y.cumsum()) + 1)

plt.show()

Python绘图之二维图与三维图详解

4. 添加标题和标签 plt.title, plt.xlabe, plt.ylabel 离散点, 线

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(1000)
y = np.random.standard_normal(20)

plt.figure(figsize=(7,4)) #画布大小
plt.plot(y.cumsum(),'b',lw = 1.5) # 蓝色的线
plt.plot(y.cumsum(),'ro') #离散的点
plt.grid(True)
plt.axis('tight')
plt.xlabel('index')
plt.ylabel('value')
plt.title('A simple Plot')
plt.show()

Python绘图之二维图与三维图详解

b. 二维数据集

np.random.seed(2000)
y = np.random.standard_normal((10, 2)).cumsum(axis=0)  #10行2列  在这个数组上调用cumsum 计算赝本数据在0轴(即第一维)上的总和
print y

Python绘图之二维图与三维图详解

1.两个数据集绘图

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(2000)
y = np.random.standard_normal((10, 2))
plt.figure(figsize=(7,5))
plt.plot(y, lw = 1.5)
plt.plot(y, 'ro')
plt.grid(True)
plt.axis('tight')
plt.xlabel('index')
plt.ylabel('value')
plt.title('A simple plot')
plt.show()

Python绘图之二维图与三维图详解

2.添加图例 plt.legend(loc = 0)

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(2000)
y = np.random.standard_normal((10, 2))
plt.figure(figsize=(7,5))
plt.plot(y[:,0], lw = 1.5,label = '1st')
plt.plot(y[:,1], lw = 1.5, label = '2st')
plt.plot(y, 'ro')
plt.grid(True)
plt.legend(loc = 0) #图例位置自动
plt.axis('tight')
plt.xlabel('index')
plt.ylabel('value')
plt.title('A simple plot')
plt.show()

Python绘图之二维图与三维图详解

3.使用2个 Y轴(左右)fig, ax1 = plt.subplots() ax2 = ax1.twinx()

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(2000)
y = np.random.standard_normal((10, 2))

fig, ax1 = plt.subplots() # 关键代码1 plt first data set using first (left) axis

plt.plot(y[:,0], lw = 1.5,label = '1st')

plt.plot(y[:,0], 'ro')
plt.grid(True)
plt.legend(loc = 0) #图例位置自动
plt.axis('tight')
plt.xlabel('index')
plt.ylabel('value')
plt.title('A simple plot')

ax2 = ax1.twinx() #关键代码2 plt second data set using second(right) axis
plt.plot(y[:,1],'g', lw = 1.5, label = '2nd')
plt.plot(y[:,1], 'ro')
plt.legend(loc = 0)
plt.ylabel('value 2nd')
plt.show()

Python绘图之二维图与三维图详解

4.使用两个子图(上下,左右)plt.subplot(211)

通过使用 plt.subplots 函数,可以直接访问底层绘图对象,例如可以用它生成和第一个子图共享 x 轴的第二个子图.

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(2000)
y = np.random.standard_normal((10, 2))

plt.figure(figsize=(7,5))
plt.subplot(211) #两行一列,第一个图
plt.plot(y[:,0], lw = 1.5,label = '1st')
plt.plot(y[:,0], 'ro')
plt.grid(True)
plt.legend(loc = 0) #图例位置自动
plt.axis('tight')
plt.ylabel('value')
plt.title('A simple plot')


plt.subplot(212) #两行一列.第二个图
plt.plot(y[:,1],'g', lw = 1.5, label = '2nd')
plt.plot(y[:,1], 'ro')
plt.grid(True)
plt.legend(loc = 0)
plt.xlabel('index')
plt.ylabel('value 2nd')
plt.axis('tight')
plt.show()

Python绘图之二维图与三维图详解

5.左右子图

有时候,选择两个不同的图标类型来可视化数据可能是必要的或者是理想的.利用子图方法:

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(2000)
y = np.random.standard_normal((10, 2))

plt.figure(figsize=(10,5))
plt.subplot(121) #两行一列,第一个图
plt.plot(y[:,0], lw = 1.5,label = '1st')
plt.plot(y[:,0], 'ro')
plt.grid(True)
plt.legend(loc = 0) #图例位置自动
plt.axis('tight')
plt.xlabel('index')
plt.ylabel('value')
plt.title('1st Data Set')

plt.subplot(122)
plt.bar(np.arange(len(y)), y[:,1],width=0.5, color='g',label = '2nc')
plt.grid(True)
plt.legend(loc=0)
plt.axis('tight')
plt.xlabel('index')
plt.title('2nd Data Set')
plt.show()

Python绘图之二维图与三维图详解

c.其他绘图样式,散点图,直方图等

1.散点图

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(2000)
y = np.random.standard_normal((1000, 2))
plt.figure(figsize=(7,5))
plt.scatter(y[:,0],y[:,1],marker='o')
plt.grid(True)
plt.xlabel('1st')
plt.ylabel('2nd')
plt.title('Scatter Plot')
plt.show()

Python绘图之二维图与三维图详解

2.直方图 plt.hist

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(2000)
y = np.random.standard_normal((1000, 2))
plt.figure(figsize=(7,5))
plt.hist(y,label=['1st','2nd'],bins=25)
plt.grid(True)
plt.xlabel('value')
plt.ylabel('frequency')
plt.title('Histogram')
plt.show()

Python绘图之二维图与三维图详解

3.直方图 同一个图中堆叠

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(2000)
y = np.random.standard_normal((1000, 2))
plt.figure(figsize=(7,5))
plt.hist(y,label=['1st','2nd'],color=['b','g'],stacked=True,bins=20)
plt.grid(True)
plt.xlabel('value')
plt.ylabel('frequency')
plt.title('Histogram')
plt.show()

Python绘图之二维图与三维图详解

4.箱型图 boxplot

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(2000)
y = np.random.standard_normal((1000, 2))
fig, ax = plt.subplots(figsize=(7,4))
plt.boxplot(y)

plt.grid(True)
plt.setp(ax,xticklabels=['1st' , '2nd'])
plt.xlabel('value')
plt.ylabel('frequency')
plt.title('Histogram')
plt.show()

Python绘图之二维图与三维图详解

5.绘制函数

from matplotlib.patches import Polygon
import numpy as np
import matplotlib.pyplot as plt

#1. 定义积分函数
def func(x):
  return 0.5 * np.exp(x)+1

#2.定义积分区间
a,b = 0.5, 1.5
x = np.linspace(0, 2 )
y = func(x)
#3.绘制函数图形
fig, ax = plt.subplots(figsize=(7,5))
plt.plot(x,y, 'b',linewidth=2)
plt.ylim(ymin=0)
#4.核心, 我们使用Polygon函数生成阴影部分,表示积分面积:
Ix = np.linspace(a,b)
Iy = func(Ix)
verts = [(a,0)] + list(zip(Ix, Iy))+[(b,0)]
poly = Polygon(verts,facecolor='0.7',edgecolor = '0.5')
ax.add_patch(poly)
#5.用plt.text和plt.figtext在图表上添加数学公式和一些坐标轴标签。
plt.text(0.5 *(a+b),1,r"$\int_a^b f(x)\mathrm{d}x$", horizontalalignment ='center',fontsize=20)
plt.figtext(0.9, 0.075,'$x$')
plt.figtext(0.075, 0.9, '$f(x)$')
#6. 分别设置x,y刻度标签的位置。
ax.set_xticks((a,b))
ax.set_xticklabels(('$a$','$b$'))
ax.set_yticks([func(a),func(b)])
ax.set_yticklabels(('$f(a)$','$f(b)$'))
plt.grid(True)

Python绘图之二维图与三维图详解

2.金融学图表 matplotlib.finance

1.烛柱图 candlestick

#!/etc/bin/python
#coding=utf-8
import matplotlib.pyplot as plt
import matplotlib.finance as mpf
start = (2014, 5,1)
end = (2014, 7,1)
quotes = mpf.quotes_historical_yahoo('^GDAXI',start,end)
# print quotes[:2]

fig, ax = plt.subplots(figsize=(8,5))
fig.subplots_adjust(bottom = 0.2)
mpf.candlestick(ax, quotes, width=0.6, colorup='b',colordown='r')
plt.grid(True)
ax.xaxis_date() #x轴上的日期
ax.autoscale_view()
plt.setp(plt.gca().get_xticklabels(),rotation=30) #日期倾斜
plt.show()

Python绘图之二维图与三维图详解

2. plot_day_summary

该函数提供了一个相当类似的图标类型,使用方法和 candlestick 函数相同,使用类似的参数. 这里开盘价和收盘价不是由彩色矩形表示,而是由两条短水平线表示.

#!/etc/bin/python
#coding=utf-8
import matplotlib.pyplot as plt
import matplotlib.finance as mpf
start = (2014, 5,1)
end = (2014, 7,1)
quotes = mpf.quotes_historical_yahoo('^GDAXI',start,end)
# print quotes[:2]

fig, ax = plt.subplots(figsize=(8,5))
fig.subplots_adjust(bottom = 0.2)
mpf.plot_day_summary(ax, quotes, colorup='b',colordown='r')
plt.grid(True)
ax.xaxis_date() #x轴上的日期
ax.autoscale_view()
plt.setp(plt.gca().get_xticklabels(),rotation=30) #日期倾斜
plt.show()

Python绘图之二维图与三维图详解

3.股价数据和成交量

#!/etc/bin/python
#coding=utf-8
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.finance as mpf
start = (2014, 5,1)
end = (2014, 7,1)
quotes = mpf.quotes_historical_yahoo('^GDAXI',start,end)
# print quotes[:2]

quotes = np.array(quotes)
fig, (ax1, ax2) = plt.subplots(2, sharex=True, figsize=(8,6))
mpf.candlestick(ax1, quotes, width=0.6,colorup='b',colordown='r')
ax1.set_title('Yahoo Inc.')
ax1.set_ylabel('index level')
ax1.grid(True)
ax1.xaxis_date()
plt.bar(quotes[:,0] - 0.25, quotes[:, 5], width=0.5)

ax2.set_ylabel('volume')
ax2.grid(True)
ax2.autoscale_view()
plt.setp(plt.gca().get_xticklabels(),rotation=30)
plt.show()

Python绘图之二维图与三维图详解

3.3D 绘图

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib.pyplot as plt

stike = np.linspace(50, 150, 24)
ttm = np.linspace(0.5, 2.5, 24)
stike, ttm = np.meshgrid(stike, ttm)
print stike[:2]

iv = (stike - 100) ** 2 / (100 * stike) /ttm
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure(figsize=(9,6))
ax = fig.gca(projection='3d')
surf = ax.plot_surface(stike, ttm, iv, rstride=2, cstride=2, cmap=plt.cm.coolwarm, linewidth=0.5, antialiased=True)
ax.set_xlabel('strike')
ax.set_ylabel('time-to-maturity')
ax.set_zlabel('implied volatility')

plt.show()

Python绘图之二维图与三维图详解

到此这篇关于Python绘图之二维图与三维图详解的文章就介绍到这了,更多相关Python绘图内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
讲解Python中的标识运算符
May 14 Python
Python 专题四 文件基础知识
Mar 20 Python
Django实战之用户认证(初始配置)
Jul 16 Python
python实现遍历文件夹修改文件后缀
Aug 28 Python
python实现事件驱动
Nov 21 Python
python读取Excel表格文件的方法
Sep 02 Python
python 消费 kafka 数据教程
Dec 21 Python
Python装饰器原理与基本用法分析
Jan 07 Python
基于Python爬取爱奇艺资源过程解析
Mar 02 Python
PyCharm2020.1.1与Python3.7.7的安装教程图文详解
Aug 07 Python
Python  Asyncio模块实现的生产消费者模型的方法
Mar 01 Python
python 将Excel转Word的示例
Mar 02 Python
Python连接Impala实现步骤解析
Aug 04 #Python
python利用蒙版抠图(使用PIL.Image和cv2)输出透明背景图
Aug 04 #Python
Python如何给函数库增加日志功能
Aug 04 #Python
pycharm导入源码的具体步骤
Aug 04 #Python
python根据用户需求输入想爬取的内容及页数爬取图片方法详解
Aug 03 #Python
Python 如何调试程序崩溃错误
Aug 03 #Python
Python 捕获代码中所有异常的方法
Aug 03 #Python
You might like
apache rewrite_module模块使用教程
2008/01/10 PHP
php session和cookie使用说明
2010/04/07 PHP
深入php数据采集的详解
2013/06/02 PHP
本地机apache配置基于域名的虚拟主机详解
2013/08/10 PHP
php 批量替换程序的具体实现代码
2013/10/04 PHP
php获取本周星期一具体日期的方法
2015/04/20 PHP
PHP判断是否为空的几个函数对比
2015/04/21 PHP
详细分析PHP 命名空间(namespace)
2020/06/30 PHP
javascript中巧用“闭包”实现程序的暂停执行功能
2007/04/04 Javascript
jquery无缝向上滚动实现代码
2013/03/29 Javascript
解决jquery1.9不支持browser对象的问题
2013/11/13 Javascript
Js为表单动态添加节点内容的方法
2015/02/10 Javascript
浅谈js中的闭包
2015/03/16 Javascript
javascript中关于&& 和 || 表达式的小技巧分享
2015/04/10 Javascript
微信+angularJS的SPA应用中用router进行页面跳转,jssdk校验失败问题解决
2016/09/09 Javascript
微信小程序 详解页面跳转与返回并回传数据
2017/02/13 Javascript
Vue入门之数据绑定(小结)
2018/01/08 Javascript
javaScript 实现重复输出给定的字符串的常用方法小结
2020/02/20 Javascript
[09:13]2014DOTA2国际邀请赛 中国区预选赛coser表演
2014/05/23 DOTA
[01:10]DOTA2次级职业联赛 - EP战队宣传片
2014/12/01 DOTA
python 生成目录树及显示文件大小的代码
2009/07/23 Python
Python中捕捉详细异常信息的代码示例
2014/09/18 Python
python实现爬虫下载美女图片
2015/07/14 Python
Pycharm学习教程(2) 代码风格
2017/05/02 Python
python实现简易通讯录修改版
2018/03/13 Python
django静态文件加载的方法
2018/05/20 Python
python中比较两个列表的实例方法
2019/07/04 Python
Canvas与图片压缩的示例代码
2017/11/28 HTML / CSS
AT&T Wireless:手机、无限数据计划和配件
2018/06/03 全球购物
运动会广播稿100字
2014/01/11 职场文书
放飞理想演讲稿
2014/09/09 职场文书
2014年内部审计工作总结
2014/12/09 职场文书
三下乡个人总结
2015/03/04 职场文书
2019年七夕情人节浪漫祝福语大全!
2019/08/08 职场文书
探究Mysql模糊查询是否区分大小写
2021/06/11 MySQL
MySQL 发生同步延迟时Seconds_Behind_Master还为0的原因
2021/06/21 MySQL