Posted in Python onMarch 25, 2020
本文实例为大家分享了python读取mysql数据绘制条形图的具体代码,供大家参考,具体内容如下
Mysql 脚本示例:
create table demo( id int ,product varchar(50) ,price decimal(18,2) ,quantity int ,amount decimal(18,2) ,orderdate datetime ); insert into demo select 1,'AAA',15.2,5,76,'2017-09-09' union all select 2,'BBB',10,6,60,'2016-05-18' union all select 3,'CCC',21,11,231,'2014-07-11' union all select 4,'DDD',55,2,110,'2016-12-24' union all select 5,'EEE',20,4,80,'2017-02-08' union all select 6,'FFF',45,2,90,'2016-08-19' union all select 7,'GGG',33,5,165,'2017-10-11' union all select 8,'HHH',5,40,200,'2014-08-30' union all select 9,'III',3,20,60,'2015-02-25' union all select 10,'JJJ',10,15,150,'2015-11-02';
python 绘图分析:
# -*- coding: utf-8 -*- #import numpy import MySQLdb import plotly.plotly import plotly.graph_objs as pg host = "localhost" port = 3306 user = "root" passwd = "mysql" charset = "utf8" dbname = "test" conn = None try: conn = MySQLdb.Connection( host = host, port = port, user = user, passwd = passwd, db = dbname, charset = charset ) cur = conn.cursor(MySQLdb.cursors.DictCursor) cur.execute("select * from demo;") rows = cur.fetchall() #rows = numpy.array(rows) lists = [[],[],[],[]] for row in rows: lists[0].append(row["product"]) lists[1].append(row["price"]) lists[2].append(row["quantity"]) lists[3].append(row["amount"]) #print(lists) #print(lists[0]) #print(([x[0] for x in lists])) date_price = pg.Bar( x=lists[0], y=lists[1], name='价格') date_quantity = pg.Bar( x=lists[0], y=lists[2], name='数量') date_amount = pg.Bar( x=lists[0], y=lists[3], name='总价') data = [date_price, date_quantity, date_amount] #barmode = [stack,group,overlay,relative] layout = pg.Layout( barmode='group',title="各产品销售情况" ) fig = pg.Figure(data=data, layout=layout) plotly.offline.plot(fig, filename = "C:/Users/huangzecheng/Desktop/test.html") finally: if conn: conn.close()
将代码保存为文件 bartest.py ,执行脚本 python bartest.py ,生成 html 文件如下:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。
python读取mysql数据绘制条形图
- Author -
薛定谔的DBA声明:登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。
Reply on: @reply_date@
@reply_contents@