Python语法垃圾回收机制原理解析


Posted in Python onMarch 25, 2020

一 引入

解释器在执行到定义变量的语法时,会申请内存空间来存放变量的值,而内存的容量是有限的,这就涉及到变量值所占用内存空间的回收问题,当一个变量值没有用了(简称垃圾)就应该将其占用的内存给回收掉,那什么样的变量值是没有用的呢?
由于变量名是访问到变量值的唯一方式,所以当一个变量值不再关联任何变量名时,我们就无法再访问到该变量值了,该变量值就是没有用的,就应该被当成一个垃圾回收。

毫无疑问,内存空间的申请与回收是非常耗费精力的事情,而且存在很大的危险性,稍有不慎就有可能引发内存溢出问题,好在Cpython解释器提供了自动的垃圾回收机制来帮我们 解决了这件事。

二、什么是垃圾回收机制?

垃圾回收机制(简称GC)是Python解释器自带一种机,专门用来回收不可用的变量值所占用的内存空间

三、为什么要用垃圾回收机制?

程序运行过程中会申请大量的内存空间,而对于一些无用的内存空间如果不及时清理的话会导致内存使用殆尽(内存溢出),导致程序崩溃,因此管理内存是一件重要且繁杂的事情,而python解释器自带的垃圾回收机制把程序员从繁杂的内存管理中解放出来。

四、垃圾回收机制原理分析

Python的GC模块主要运用了“引用计数”(reference counting)来跟踪和回收垃圾。在引用计数的基础上,还可以通过“标记-清除”(mark and sweep)解决容对象可能产生的循环引用的问题,并且通过“分代回收”(generation collection)以空间换取时间的方式来进一步提高垃圾回收的效率。

4.1、什么是引用计数?

引用计数就是:变量值被变量名关联的次数

如:age=18

变量值18被关联了一个变量名age,称之为引用计数为1

Python语法垃圾回收机制原理解析

引用计数增加:

age=18 (此时,变量值18的引用计数为1)
m=age (把age的内存地址给了m,此时,m,age都关联了18,所以变量值18的引用计数为2)

Python语法垃圾回收机制原理解析

引用计数减少:

age=10(名字age先与值18解除关联,再与3建立了关联,变量值18的引用计数为1)
del m(del的意思是解除变量名x与变量值18的关联关系,此时,变量18的引用计数为0)

Python语法垃圾回收机制原理解析

值18的引用计数一旦变为0,其占用的内存地址就应该被解释器的垃圾回收机制回收

4.2、引用计数扩展阅读

变量值被关联次数的增加或减少,都会引发引用计数机制的执行(增加或减少值的引用计数),这存在明显的效率问题。

如果说执行效率还仅仅是引用计数机制的一个软肋的话,那么很不幸,引用计数机制还存在着一个致命的弱点,即循环引用(也称交叉引用)

# 如下我们定义了两个列表,简称列表1与列表2,变量名l1指向列表1,变量名l2指向列表2
>>> l1=['xxx'] # 列表1被引用一次,列表1的引用计数变为1
>>> l2=['yyy'] # 列表2被引用一次,列表2的引用计数变为1
>>> l1.append(l2) # 把列表2追加到l1中作为第二个元素,列表2的引用计数变为2
>>> l2.append(l1) # 把列表1追加到l2中作为第二个元素,列表1的引用计数变为2
# l1与l2之间有相互引用
# l1 = ['xxx'的内存地址,列表2的内存地址]
# l2 = ['yyy'的内存地址,列表1的内存地址]
>>> l1
['xxx', ['yyy', [...]]]
>>> l2
['yyy', ['xxx', [...]]]
>>> l1[1][1][

循环引用会导致:值不再被任何名字关联,但是值的引用计数并不会为0,应该被回收但不能被回收,什么意思呢?试想一下,请看如下操作

>>> del l1 # 列表1的引用计数减1,列表1的引用计数变为1
>>> del l2 # 列表2的引用计数减1,列表2的引用计数变为1

此时,只剩下列表1与列表2之间的相互引用,两个列表的引用计数均不为0,但两个列表不再被任何其他对象关联,没有任何人可以再引用到它们,所以它俩占用内存空间应该被回收,但由于相互引用的存在,每一个对象的引用计数都不为0,因此这些对象所占用的内存永远不会被释放,所以循环引用是致命的,这与手动进行内存管理所产生的内存泄露毫无区别。所以Python引入了“标记-清除” 与“分代回收”来分别解决引用计数的循环引用与效率低的问题

4.2.1 标记-清除

容器对象(比如:list,set,dict,class,instance)都可以包含对其他对象的引用,所以都可能产生循环引用。而“标记-清除”计数就是为了解决循环引用的问题。

在了解标记清除算法前,我们需要明确一点,关于变量的存储,内存中有两块区域:堆区与栈区,在定义变量时,变量名与值内存地址的关联关系存放于栈区,变量值存放于堆区,内存管理回收的则是堆区的内容,详解如下图,定义了两个变量x = 10、y = 20

Python语法垃圾回收机制原理解析

当我们执行x=y时,内存中的栈区与堆区变化如下

Python语法垃圾回收机制原理解析

标记/清除算法的做法是当应用程序可用的内存空间被耗尽的时,就会停止整个程序,然后进行两项工作,第一项则是标记,第二项则是清除

#1、标记
标记的过程其实就是,遍历所有的GC Roots对象(栈区中的所有内容或者线程都可以作为GC Roots对象),然后将所
有GC Roots的对象可以直接或间接访问到的对象标记为存活的对象,其余的均为非存活对象,应该被清除。
#2、清除
清除的过程将遍历堆中所有的对象,将没有标记的对象全部清除掉。

直接引用指的是从栈区出发直接引用到的内存地址,间接引用指的是从栈区出发引用到堆区后再进一步引用到的内存地址,以我们之前的两个列表l1与l2为例画出如下图像

Python语法垃圾回收机制原理解析

当我们同时删除l1与l2时,会清理到栈区中l1与l2的内容

Python语法垃圾回收机制原理解析

这样在启用标记清除算法时,发现栈区内不再有l1与l2(只剩下堆区内二者的相互引用),于是列表1与列表2都没有被标记为存活,二者会被清理掉,这样就解决了循环引用带来的内存泄漏问题

4.2.2 分代回收

背景:

基于引用计数的回收机制,每次回收内存,都需要把所有对象的引用计数都遍历一遍,这是非常消耗时间的,于是引入了分代回收来提高回收效率,分代回收采用的是用“空间换时间”的策略。

分代:

分代回收的核心思想是:在历经多次扫描的情况下,都没有被回收的变量,gc机制就会认为,该变量是常用变量,gc对其扫描的频率会降低,具体实现原理如下:

分代指的是根据存活时间来为变量划分不同等级(也就是不同的代)
新定义的变量,放到新生代这个等级中,假设每隔1分钟扫描新生代一次,如果发现变量依然被引用,那么该对象的权重(权重本质就是个整数)加一,当变量的权重大于某个设定得值(假设为3),会将它移动到更高一级的青春代,青春代的gc扫描的频率低于新生代(扫描时间间隔更长),假设5分钟扫描青春代一次,这样每次gc需要扫描的变量的总个数就变少了,节省了扫描的总时间,接下来,青春代中的对象,也会以同样的方式被移动到老年代中。也就是等级(代)越高,被垃圾回收机制扫描的频率越低

回收:

回收依然是使用引用计数作为回收的依据
Python语法垃圾回收机制原理解析

虽然分代回收可以起到提升效率的效果,但也存在一定的缺点:

例如一个变量刚刚从新生代移入青春代,该变量的绑定关系就解除了,该变量应该被回收,但青春代的扫描频率低于新生代,所以该变量的回收就会被延迟。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
介绍Python的@property装饰器的用法
Apr 28 Python
python采集百度百科的方法
Jun 05 Python
详解python中的装饰器
Jul 10 Python
用Python读取几十万行文本数据
Dec 24 Python
python读取各种文件数据方法解析
Dec 29 Python
Python的UTC时间转换讲解
Feb 26 Python
Python实现账号密码输错三次即锁定功能简单示例
Mar 29 Python
pytorch获取模型某一层参数名及参数值方式
Dec 30 Python
基于Python实现2种反转链表方法代码实例
Jul 06 Python
基于OpenCV的网络实时视频流传输的实现
Nov 15 Python
Python字节单位转换(将字节转换为K M G T)
Mar 02 Python
发工资啦!教你用Python实现邮箱自动群发工资条
May 10 Python
python实现Pyecharts实现动态地图(Map、Geo)
Mar 25 #Python
Pyecharts 动态地图 geo()和map()的安装与用法详解
Mar 25 #Python
Django查询优化及ajax编码格式原理解析
Mar 25 #Python
python使用pyecharts库画地图数据可视化的实现
Mar 25 #Python
python实现3D地图可视化
Mar 25 #Python
简单了解django处理跨域请求最佳解决方案
Mar 25 #Python
python3利用Axes3D库画3D模型图
Mar 25 #Python
You might like
Thinkphp中volist标签mod控制一定记录的换行BUG解决方法
2014/11/04 PHP
thinkphp的URL路由规则与配置实例
2014/11/26 PHP
php数值计算num类简单操作示例
2020/05/15 PHP
javascript 读取XML数据,在页面中展现、编辑、保存的实现
2009/10/27 Javascript
js 获取浏览器版本以此来调整CSS的样式
2014/06/03 Javascript
用jquery修复在iframe下的页面锚点失效问题
2014/08/22 Javascript
Javascript基础教程之数据类型 (布尔型 Boolean)
2015/01/18 Javascript
莱鸟介绍javascript onclick事件
2016/01/06 Javascript
使用jQuery给input标签设置默认值
2016/06/20 Javascript
jQuery ajax实现省市县三级联动
2021/03/07 Javascript
jQuery 添加样式属性的优先级别方法(推荐)
2017/06/08 jQuery
详解webpack 多入口配置
2017/06/16 Javascript
浅谈鸿蒙 JavaScript GUI 技术栈
2020/09/17 Javascript
JavaScript中跨域问题的深入理解
2021/03/04 Javascript
python合并文本文件示例
2014/02/07 Python
详解Django解决ajax跨域访问问题
2018/08/24 Python
Django实现学员管理系统
2019/02/26 Python
pyqt5 删除layout中的所有widget方法
2019/06/25 Python
tensorflow指定GPU与动态分配GPU memory设置
2020/02/03 Python
详解pandas中iloc, loc和ix的区别和联系
2020/03/09 Python
python 实现关联规则算法Apriori的示例
2020/09/30 Python
HTML5实现分享到微信好友朋友圈QQ好友QQ空间微博二维码功能
2018/01/03 HTML / CSS
利用HTML5的新特点实现图片文件异步上传
2014/05/29 HTML / CSS
基于html5绘制圆形多角图案
2016/04/21 HTML / CSS
Exoticca英国:以最优惠的价格提供豪华异国情调旅行
2018/10/18 全球购物
芬兰设计商店美国:Finnish Design Shop US
2019/03/25 全球购物
Janie and Jack美国官网:GAP旗下的高档童装品牌
2019/09/09 全球购物
病人家属写给医院的感谢信
2015/01/23 职场文书
老公写给老婆的检讨书
2015/05/06 职场文书
土木工程毕业答辩开场白
2015/05/29 职场文书
教师节主题班会教案
2015/08/17 职场文书
python实现ROA算子边缘检测算法
2021/04/05 Python
MySQL主从复制断开的常用修复方法
2021/04/07 MySQL
解决redis sentinel 频繁主备切换的问题
2021/04/12 Redis
Anaconda配置各版本Pytorch的实现
2021/08/07 Python
漫改真人电影「萌系男友是燃燃的橘色」公开先导视觉图
2022/03/21 日漫