python利用opencv实现SIFT特征提取与匹配


Posted in Python onMarch 05, 2020

本文实例为大家分享了利用opencv实现SIFT特征提取与匹配的具体代码,供大家参考,具体内容如下

1、SIFT

1.1、sift的定义

SIFT,即尺度不变特征变换(Scale-invariant feature transform,SIFT),是用于图像处理领域的一种描述。这种描述具有尺度不变性,可在图像中检测出关键点,是一种局部特征描述子。

1.2、sift算法介绍

SIFT由David Lowe在1999年提出,在2004年加以完善 。SIFT在数字图像的特征描述方面当之无愧可称之为最红最火的一种,许多人对SIFT进行了改进,诞生了SIFT的一系列变种。SIFT已经申请了专利(所以现在opencv使用这个算法,需要低的版本)。

SIFT特征是基于物体上的一些局部外观的兴趣点而与影像的大小和旋转无关。对于光线、噪声、微视角改变的容忍度也相当高。基于这些特性,它们是高度显著而且相对容易撷取,在母数庞大的特征数据库中,很容易辨识物体而且鲜有误认。使用SIFT特征描述对于部分物体遮蔽的侦测率也相当高,甚至只需要3个以上的SIFT物体特征就足以计算出位置与方位。在现今的电脑硬件速度下和小型的特征数据库条件下,辨识速度可接近即时运算。SIFT特征的信息量大,适合在海量数据库中快速准确匹配。

SIFT算法具有如下一些特点:

1)SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性;
2)区分性(Distinctiveness)好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配;
3)多量性,即使少数的几个物体也可以产生大量的SIFT特征向量;
4)高速性,经优化的SIFT匹配算法甚至可以达到实时的要求;
5)可扩展性,可以很方便的与其他形式的特征向量进行联合。

1.3、特征检测

SIFT特征检测主要包括以下4个基本步骤:
1)尺度空间极值检测:搜索所有尺度上的图像位置。通过高斯微分函数来识别潜在的对于尺度和旋转不变的兴趣点。
2)关键点定位:在每个候选的位置上,通过一个拟合精细的模型来确定位置和尺度。关键点的选择依据于它们的稳定程度。
3)方向确定:基于图像局部的梯度方向,分配给每个关键点位置一个或多个方向。所有后面的对图像数据的操作都相对于关键点的方向、尺度和位置进行变换,从而提供对于这些变换的不变性。
4)关键点描述:在每个关键点周围的邻域内,在选定的尺度上测量图像局部的梯度。这些梯度被变换成一种表示,这种表示允许比较大的局部形状的变形和光照变化。

1.4、特征匹配

SIFT特征匹配主要包括2个阶段:

第一阶段:SIFT特征的生成,即从多幅图像中提取对尺度缩放、旋转、亮度变化无关的特征向量。
第二阶段:SIFT特征向量的匹配。

SIFT特征的生成一般包括以下几个步骤:

1)构建尺度空间,检测极值点,获得尺度不变性。
2)特征点过滤并进行精确定位。
3)为特征点分配方向值。
4)生成特征描述子。以特征点为中心取16×16的邻域作为采样窗口,将采样点与特征点的相对方向通过高斯加权后归入包含8个bin的方向直方图,最后获得4×4×8的128维特征描述子。当两幅图像的SIFT特征向量生成以后,下一步就可以采用关键点特征向量的欧式距离来作为两幅图像中关键点的相似性判定度量。取图1的某个关键点,通过遍历找到图像2中的距离最近的两个关键点。在这两个关键点中,如果最近距离除以次近距离小于某个阈值,则判定为一对匹配点。

2、python实现

2.1、准备工作

由于SIFT已经申请了专利,所以在高版本的opencv中,会出现错误,以前是opencv4.0.1,然后安装版本为opencv3.4.2.16
卸载以前的版本(低版本,可以试试直接运行代码):

pip uninstall opencv-python
pip uninstall opencv-contrib-python

用命令行(CMD),采用pip方式:

pip install opencv_python==3.4.2.16 
pip install opencv-contrib-python==3.4.2.16

python利用opencv实现SIFT特征提取与匹配

2.2、代码实现

#!/usr/bin/env python3
# -*- coding:utf-8 -*-
u'''
Created on 2019年6月14日
@author: wuluo
'''
__author__ = 'wuluo'
__version__ = '1.0.0'
__company__ = u'重庆交大'
__updated__ = '2019-06-14'
from matplotlib import pyplot as plt
from imagedt.decorator import time_cost
import cv2
print('cv version: ', cv2.__version__)

def bgr_rgb(img):
 (r, g, b) = cv2.split(img)
 return cv2.merge([b, g, r])

def orb_detect(image_a, image_b):
 # feature match
 orb = cv2.ORB_create()
 kp1, des1 = orb.detectAndCompute(image_a, None)
 kp2, des2 = orb.detectAndCompute(image_b, None)
 # create BFMatcher object
 bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
 # Match descriptors.
 matches = bf.match(des1, des2)
 # Sort them in the order of their distance.
 matches = sorted(matches, key=lambda x: x.distance)
 # Draw first 10 matches.
 img3 = cv2.drawMatches(image_a, kp1, image_b, kp2,
    matches[:100], None, flags=2)
 return bgr_rgb(img3)

@time_cost
def sift_detect(img1, img2, detector='surf'):
 if detector.startswith('si'):
 print("sift detector......")
 sift = cv2.xfeatures2d.SURF_create()
 else:
 print("surf detector......")
 sift = cv2.xfeatures2d.SURF_create()
 # find the keypoints and descriptors with SIFT
 kp1, des1 = sift.detectAndCompute(img1, None)
 kp2, des2 = sift.detectAndCompute(img2, None)
 # BFMatcher with default params
 bf = cv2.BFMatcher()
 matches = bf.knnMatch(des1, des2, k=2)
 # Apply ratio test
 good = [[m] for m, n in matches if m.distance < 0.5 * n.distance]
 # cv2.drawMatchesKnn expects list of lists as matches.
 img3 = cv2.drawMatchesKnn(img1, kp1, img2, kp2, good, None, flags=2)
 return bgr_rgb(img3)

if __name__ == "__main__":
 # load image
 image_a = cv2.imread('G:/2018and2019two/qianrushi/wuluo1.jpg')#绝对路径
 image_b = cv2.imread('G:/2018and2019two/qianrushi/wuluo2.jpg')
 # ORB
 # img = orb_detect(image_a, image_b)
 # SIFT or SURF
 img = sift_detect(image_a, image_b)
 plt.imshow(img)
 plt.show()

2.3、运行结果

采用同一张图片:

python利用opencv实现SIFT特征提取与匹配

两张有重叠部分的代码:

python利用opencv实现SIFT特征提取与匹配

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
如何运行Python程序的方法
Apr 21 Python
python求解水仙花数的方法
May 11 Python
Python 实现简单的shell sed替换功能(实例讲解)
Sep 29 Python
python中for用来遍历range函数的方法
Jun 08 Python
Flask框架实现给视图函数增加装饰器操作示例
Jul 16 Python
Python基本数据结构与用法详解【列表、元组、集合、字典】
Mar 23 Python
python图像处理入门(一)
Apr 04 Python
Python爬取智联招聘数据分析师岗位相关信息的方法
Aug 13 Python
python基础 range的用法解析
Aug 23 Python
pygame库实现移动底座弹球小游戏
Apr 14 Python
django 链接多个数据库 并使用原生sql实现
Mar 28 Python
Python填充任意颜色,不同算法时间差异分析说明
May 16 Python
python画图常规设置方式
Mar 05 #Python
解决python -m pip install --upgrade pip 升级不成功问题
Mar 05 #Python
python入门之井字棋小游戏
Mar 05 #Python
解决Python图形界面中设置尺寸的问题
Mar 05 #Python
python实现简单井字棋小游戏
Mar 05 #Python
python GUI编程(Tkinter) 创建子窗口及在窗口上用图片绘图实例
Mar 04 #Python
Python: tkinter窗口屏幕居中,设置窗口最大,最小尺寸实例
Mar 04 #Python
You might like
实用函数7
2007/11/08 PHP
PHP使用正则表达式清除超链接文本
2013/11/12 PHP
PHP学习笔记之session
2018/05/06 PHP
javascript Array.prototype.slice使用说明
2010/10/11 Javascript
jQuery Tips 为AJAX回调函数传递额外参数的方法
2010/12/28 Javascript
使用jQuery validate 验证注册表单实例演示
2013/03/25 Javascript
gridpanel动态加载数据的实例代码
2013/07/18 Javascript
详细介绍8款超实用JavaScript框架
2013/10/25 Javascript
jquery实现多屏多图焦点图切换特效的方法
2015/05/04 Javascript
Node.js的Web模板引擎ejs的入门使用教程
2016/06/06 Javascript
jQuery删除节点用法示例(remove方法)
2016/09/08 Javascript
详解jQuery uploadify文件上传插件的使用方法
2016/12/16 Javascript
利用JQuery实现datatables插件的增加和删除行功能
2017/01/06 Javascript
vue2.0的contextmenu右键弹出菜单的实例代码
2017/07/24 Javascript
表格展示利器 Bootstrap Table实例代码
2017/09/06 Javascript
详解react关于事件绑定this的四种方式
2018/03/09 Javascript
Vue.js实现tab切换效果
2019/07/24 Javascript
three.js利用卷积法如何实现物体描边效果
2019/11/27 Javascript
谈谈JavaScript中的函数
2020/09/08 Javascript
[03:05]《我与DAC》之xiao8:DAC与BG
2018/03/27 DOTA
[54:57]DOTA2-DPC中国联赛定级赛 Aster vs DLG BO3第二场 1月8日
2021/03/11 DOTA
Python随机生成一个6位的验证码代码分享
2015/03/24 Python
python实现一个简单的并查集的示例代码
2018/03/19 Python
python 实现查找文件并输出满足某一条件的数据项方法
2019/06/12 Python
Python文本处理简单易懂方法解析
2019/12/19 Python
基于python模拟bfs和dfs代码实例
2020/11/19 Python
澳洲的UGG雪地靴超级市场:Uggs.com.au
2020/04/06 全球购物
在职研究生自我鉴定
2013/10/16 职场文书
项目资料员岗位职责
2013/12/10 职场文书
普通简短的个人自我评价
2014/02/15 职场文书
座谈会主持词
2014/03/20 职场文书
绘画专业自荐信
2014/07/04 职场文书
班子四风对照检查材料思想汇报
2014/09/29 职场文书
Python使用sql语句对mysql数据库多条件模糊查询的思路详解
2021/04/12 Python
Mysql使用全文索引(FullText index)的实例代码
2022/04/03 MySQL
Python Django / Flask如何使用Elasticsearch
2022/04/19 Python