PyTorch: 梯度下降及反向传播的实例详解


Posted in Python onAugust 20, 2019

线性模型

线性模型介绍

线性模型是很常见的机器学习模型,通常通过线性的公式来拟合训练数据集。训练集包括(x,y),x为特征,y为目标。如下图:

PyTorch: 梯度下降及反向传播的实例详解

将真实值和预测值用于构建损失函数,训练的目标是最小化这个函数,从而更新w。当损失函数达到最小时(理想上,实际情况可能会陷入局部最优),此时的模型为最优模型,线性模型常见的的损失函数:

PyTorch: 梯度下降及反向传播的实例详解

线性模型例子

下面通过一个例子可以观察不同权重(w)对模型损失函数的影响。

#author:yuquanle
#data:2018.2.5
#Study of Linear Model
import numpy as np
import matplotlib.pyplot as plt

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

def forward(x):
  return x * w

def loss(x, y):
  y_pred = forward(x)
  return (y_pred - y)*(y_pred - y)

w_list = []
mse_list = []

for w in np.arange(0.0, 4.1, 0.1):
  print("w=", w)
  l_sum = 0
  for x_val, y_val in zip(x_data, y_data):
    # error
    l = loss(x_val, y_val)
    l_sum += l
  print("MSE=", l_sum/3)
  w_list.append(w)
  mse_list.append(l_sum/3)

plt.plot(w_list, mse_list)
plt.ylabel("Loss")
plt.xlabel("w")
plt.show()

输出结果:
w= 0.0
MSE= 18.6666666667
w= 0.1
MSE= 16.8466666667
w= 0.2
MSE= 15.12
w= 0.3
MSE= 13.4866666667
w= 0.4
MSE= 11.9466666667
w= 0.5
MSE= 10.5
w= 0.6
MSE= 9.14666666667

调整w,loss变化图:

PyTorch: 梯度下降及反向传播的实例详解

可以发现当w=2时,loss最小。但是现实中最常见的情况是,我们知道数据集,定义好损失函数之后(loss),我们并不会从0到n去设置w的值,然后求loss,最后选取使得loss最小的w作为最佳模型的参数。更常见的做法是,首先随机初始化w的值,然后根据loss函数定义对w求梯度,然后通过w的梯度来更新w的值,这就是经典的梯度下降法思想。

梯度下降法

梯度的本意是一个向量,表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。

梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数和模型参数值。即每次更新参数w减去其梯度(通常会乘以学习率)。

PyTorch: 梯度下降及反向传播的实例详解

#author:yuquanle
#data:2018.2.5
#Study of SGD


x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

# any random value
w = 1.0

# forward pass
def forward(x):
  return x * w

def loss(x, y):
  y_pred = forward(x)
  return (y_pred - y)*(y_pred - y)

# compute gradient (loss对w求导)
def gradient(x, y):
  return 2*x*(x*w - y)

# Before training
print("predict (before training)", 4, forward(4))

# Training loop
for epoch in range(20):
  for x, y in zip(x_data, y_data):
    grad = gradient(x, y)
    w = w - 0.01 * grad
    print("\t grad: ",x, y, grad)
    l = loss(x, y)
  print("progress:", epoch, l)

# After training
print("predict (after training)", 4, forward(4))

输出结果:
predict (before training) 4 4.0
   grad: 1.0 2.0 -2.0
   grad: 2.0 4.0 -7.84
   grad: 3.0 6.0 -16.2288
progress: 0 4.919240100095999
   grad: 1.0 2.0 -1.478624
   grad: 2.0 4.0 -5.796206079999999
   grad: 3.0 6.0 -11.998146585599997
progress: 1 2.688769240265834
   grad: 1.0 2.0 -1.093164466688
   grad: 2.0 4.0 -4.285204709416961
   grad: 3.0 6.0 -8.87037374849311
progress: 2 1.4696334962911515
   grad: 1.0 2.0 -0.8081896081960389
   grad: 2.0 4.0 -3.1681032641284723
   grad: 3.0 6.0 -6.557973756745939
progress: 3 0.8032755585999681
   grad: 1.0 2.0 -0.59750427561463
   grad: 2.0 4.0 -2.3422167604093502
   grad: 3.0 6.0 -4.848388694047353
progress: 4 0.43905614881022015
   grad: 1.0 2.0 -0.44174208101320334
   grad: 2.0 4.0 -1.7316289575717576
   grad: 3.0 6.0 -3.584471942173538
progress: 5 0.2399802903801062
   grad: 1.0 2.0 -0.3265852213980338
   grad: 2.0 4.0 -1.2802140678802925
   grad: 3.0 6.0 -2.650043120512205
progress: 6 0.1311689630744999
   grad: 1.0 2.0 -0.241448373202223
   grad: 2.0 4.0 -0.946477622952715
   grad: 3.0 6.0 -1.9592086795121197
progress: 7 0.07169462478267678
   grad: 1.0 2.0 -0.17850567968888198
   grad: 2.0 4.0 -0.6997422643804168
   grad: 3.0 6.0 -1.4484664872674653
progress: 8 0.03918700813247573
   grad: 1.0 2.0 -0.13197139106214673
   grad: 2.0 4.0 -0.5173278529636143
   grad: 3.0 6.0 -1.0708686556346834
progress: 9 0.021418922423117836
predict (after training) 4 7.804863933862125

反向传播

但是在定义好模型之后,使用pytorch框架不需要我们手动的求导,我们可以通过反向传播将梯度往回传播。通常有二个过程,forward和backward:

PyTorch: 梯度下降及反向传播的实例详解

PyTorch: 梯度下降及反向传播的实例详解

#author:yuquanle
#data:2018.2.6
#Study of BackPagation

import torch
from torch import nn
from torch.autograd import Variable

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

# Any random value
w = Variable(torch.Tensor([1.0]), requires_grad=True)

# forward pass
def forward(x):
  return x*w

# Before training
print("predict (before training)", 4, forward(4))

def loss(x, y):
  y_pred = forward(x)
  return (y_pred-y)*(y_pred-y)

# Training: forward, backward and update weight
# Training loop
for epoch in range(10):
  for x, y in zip(x_data, y_data):
    l = loss(x, y)
    l.backward()
    print("\t grad:", x, y, w.grad.data[0])
    w.data = w.data - 0.01 * w.grad.data
    # Manually zero the gradients after running the backward pass and update w
    w.grad.data.zero_()
  print("progress:", epoch, l.data[0])

# After training
print("predict (after training)", 4, forward(4))

输出结果:
predict (before training) 4 Variable containing:
 4
[torch.FloatTensor of size 1]
   grad: 1.0 2.0 -2.0
   grad: 2.0 4.0 -7.840000152587891
   grad: 3.0 6.0 -16.228801727294922
progress: 0 7.315943717956543
   grad: 1.0 2.0 -1.478623867034912
   grad: 2.0 4.0 -5.796205520629883
   grad: 3.0 6.0 -11.998146057128906
progress: 1 3.9987640380859375
   grad: 1.0 2.0 -1.0931644439697266
   grad: 2.0 4.0 -4.285204887390137
   grad: 3.0 6.0 -8.870372772216797
progress: 2 2.1856532096862793
   grad: 1.0 2.0 -0.8081896305084229
   grad: 2.0 4.0 -3.1681032180786133
   grad: 3.0 6.0 -6.557973861694336
progress: 3 1.1946394443511963
   grad: 1.0 2.0 -0.5975041389465332
   grad: 2.0 4.0 -2.3422164916992188
   grad: 3.0 6.0 -4.848389625549316
progress: 4 0.6529689431190491
   grad: 1.0 2.0 -0.4417421817779541
   grad: 2.0 4.0 -1.7316293716430664
   grad: 3.0 6.0 -3.58447265625
progress: 5 0.35690122842788696
   grad: 1.0 2.0 -0.3265852928161621
   grad: 2.0 4.0 -1.2802143096923828
   grad: 3.0 6.0 -2.650045394897461
progress: 6 0.195076122879982
   grad: 1.0 2.0 -0.24144840240478516
   grad: 2.0 4.0 -0.9464778900146484
   grad: 3.0 6.0 -1.9592113494873047
progress: 7 0.10662525147199631
   grad: 1.0 2.0 -0.17850565910339355
   grad: 2.0 4.0 -0.699742317199707
   grad: 3.0 6.0 -1.4484672546386719
progress: 8 0.0582793727517128
   grad: 1.0 2.0 -0.1319713592529297
   grad: 2.0 4.0 -0.5173273086547852
   grad: 3.0 6.0 -1.070866584777832
progress: 9 0.03185431286692619
predict (after training) 4 Variable containing:
 7.8049
[torch.FloatTensor of size 1]
Process finished with exit code 0

以上这篇PyTorch: 梯度下降及反向传播的实例详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python的math模块中的常用数学函数整理
Feb 04 Python
python利用matplotlib库绘制饼图的方法示例
Dec 18 Python
python爬虫之BeautifulSoup 使用select方法详解
Oct 23 Python
Python用户推荐系统曼哈顿算法实现完整代码
Dec 01 Python
python操作excel的包(openpyxl、xlsxwriter)
Jun 11 Python
python pandas 对时间序列文件处理的实例
Jun 22 Python
Python的UTC时间转换讲解
Feb 26 Python
详解PyTorch中Tensor的高阶操作
Aug 18 Python
python 求10个数的平均数实例
Dec 16 Python
详解python itertools功能
Feb 07 Python
pycharm远程连接vagrant虚拟机中mariadb数据库
Jun 05 Python
Django contrib auth authenticate函数源码解析
Nov 12 Python
python爬虫 urllib模块发起post请求过程解析
Aug 20 #Python
pytorch 加载(.pth)格式的模型实例
Aug 20 #Python
python multiprocessing模块用法及原理介绍
Aug 20 #Python
python 并发编程 阻塞IO模型原理解析
Aug 20 #Python
PyTorch中常用的激活函数的方法示例
Aug 20 #Python
Pytorch抽取网络层的Feature Map(Vgg)实例
Aug 20 #Python
python批量解压zip文件的方法
Aug 20 #Python
You might like
PHP压缩html网页代码(清除空格,换行符,制表符,注释标记)
2012/04/02 PHP
php超快高效率统计大文件行数
2015/07/05 PHP
基于PHP制作验证码
2016/10/12 PHP
PHPExcel导出2003和2007的excel文档功能示例
2017/01/04 PHP
解决在laravel中leftjoin带条件查询没有返回右表为NULL的问题
2019/10/15 PHP
ThinkPHP类似AOP思想的参数验证的实现方法
2019/12/18 PHP
Expandable "Detail" Table Rows
2007/08/29 Javascript
JavaScript 解析读取XML文档 实例代码
2009/07/07 Javascript
用函数模板,写一个简单高效的 JSON 查询器的方法介绍
2013/04/17 Javascript
详解JavaScript UTC时间转换方法
2016/01/07 Javascript
Angular 页面跳转时传参问题
2016/08/01 Javascript
Bootstrap复选框和单选按钮美化插件(推荐)
2016/11/23 Javascript
jQuery使用siblings获取某元素所有同辈(兄弟姐妹)元素用法示例
2017/01/30 Javascript
浅谈FastClick 填坑及源码解析
2018/03/02 Javascript
vue 双向数据绑定的实现学习之监听器的实现方法
2018/11/30 Javascript
详解element-ui日期时间选择器的日期格式化问题
2019/04/08 Javascript
Vue快速实现通用表单验证功能
2019/12/05 Javascript
Python 用户登录验证的小例子
2013/03/06 Python
Python实现的手机号归属地相关信息查询功能示例
2017/06/08 Python
Python简单读取json文件功能示例
2017/11/30 Python
Django框架之DRF 基于mixins来封装的视图详解
2019/07/23 Python
django框架模型层功能、组成与用法分析
2019/07/30 Python
使用OpenCV实现仿射变换—缩放功能
2019/08/29 Python
python conda操作方法
2019/09/11 Python
捷克钓鱼用品网上商店:Parys.cz
2018/06/15 全球购物
戴森香港官方网站:Dyson香港
2021/02/11 全球购物
设计模式的基本要素是什么
2014/04/21 面试题
什么是GWT的Entry Point
2013/08/16 面试题
2014年国庆标语
2014/06/30 职场文书
无财产离婚协议书范本
2014/10/28 职场文书
2014年团委工作总结
2014/11/13 职场文书
初中体育教学随笔
2015/08/15 职场文书
《蜜蜂引路》教学反思
2016/02/22 职场文书
Redis安装启动及常见数据类型
2021/04/14 Redis
【海涛DOTA】D-cup邀请赛NV.cn vs DT.Love
2022/04/01 DOTA
Ruby GDBM操作简介及数据存储原理
2022/04/19 Ruby