python实战之实现excel读取、统计、写入的示例讲解


Posted in Python onMay 02, 2018

背景

图像领域内的一个国内会议快要召开了,要发各种邀请邮件,之后要录入、统计邮件回复(参会还是不参会等)。如此重要的任务,老师就托付给我了。ps: 统计回复邮件的时候,能知道谁参会或谁不参会。

而我主要的任务,除了录入邮件回复,就是统计理事和普通会员的参会情况了(参会的、不参会的、没回复的)。录入邮件回复信息没办法只能人工操作,但如果统计也要人工的话,那工作量就太大了(比如在上百人的列表中搜索另外上百人在不在此列表中!!),于是就想到了用python来帮忙,花两天时间不断修改,写了6个版本。。。

摘要

version_1 基本实现了excel读取、统计、显示功能,但问题也有不少,像显示出来后还要自已复制、粘贴到excel表,而且set中还有nan这样的bug。

version_2 相比较version_1而言,此版本用set代替list,可以自动去重。

version_3 解决了set中出现nan的bug,而且还加入的excel写入的功能,但一次只能写入一张表,所以要运行两次才能写入两张表(sheet)。

version_4 的改进在于将version_3中写入两张表格的操作,集成在一个程序里,只需要运行一次便可写入两张表,但也总是会写入两张表,万一你只想写入一张表呢??

version_5 相对之前版本的最大改进在于将程序模块化,更具可读性了; 对修复set中出现nan的方法也进行了改进和简化; 而且可以自由控制写入多少张表了。

version_final 相比较version_5,修复了一个bug,之前需要先验知识,现在更通用一点(prep函数取代了set2list函数)。

version_1

基本实现了excel读取、统计、显示功能,但问题也有不少,像显示出来后还要自已复制、粘贴到excel表,而且set中还有nan这样的值。

#version_1
import os
import numpy as np
import pandas as pd
os.chdir('C:\\Users\\dell\\Desktop\\0711任务')
print(os.getcwd())
data = pd.read_excel('for_python.xlsx','Sheet2')
return_set = set(data['回执名单'])
demand_set = set(data['理事名单'])
answer_list = []
unanswer_list = []
for each in demand_set:
 if each in return_set:
 answer_list.append(each)
 else:
 unanswer_list.append(each)
notattend_set = set(data['回执名单'][-15:])
nt = []
for each in notattend_set:
 if each in answer_list:
 nt.append(each)
def disp(ll, cap, num = True):
 print(cap)
 if num:
 for i, each in enumerate(ll):
  print(i+1,each)
 else:
 for each in enumerate(ll):
  print(each)
disp(answer_list,'\n理事回执名单')
disp(unanswer_list,'\n理事未回执名单')
disp(nt,'\n理事回执说不参加名单')

version_2

相比较上一个版本,此版本用set代替list,可以自动去重。

#version_2
import os
import numpy as np
import pandas as pd
os.chdir('C:\\Users\\dell\\Desktop\\0711任务')
print(os.getcwd())
data = pd.read_excel('for_python.xlsx','Sheet2')
return_set = set(data['回执名单'])
demand_set = set(data['理事名单'])
answer_set = set([]) #理事回执名单
unanswer_set = set([]) #理事未回执名单
for each in demand_set:
 if each in return_set:
 answer_set.add(each)
 else:
 unanswer_set.add(each)
notattend_set = set(data['回执名单'][-17:])
nt = set([]) #理事回执说不参加名单
for each in notattend_set:
 if each in answer_set:
 nt.add(each)
ans_att_set = answer_set - nt #理事回执参加名单
def disp(ss, cap, num = False):
 print(cap)
 if num:
 for i, each in enumerate(ss):
  print(i+1,each)
 else:
 for each in ss:
  print(each)
#disp(answer_set,'\n理事回执名单')
disp(ans_att_set,'\n理事回执说参加名单')
disp(nt,'\n理事回执说不参加名单')
disp(unanswer_set,'\n理事未回执名单')
print(len(ans_att_set),len(nt),len(unanswer_set))

version_3

此版本解决了set中出现nan的bug,而且还加入的excel写入的功能,但一次只能写入一张表,所以要运行两次才能写入两张表(sheet)。

step_1

import os
import numpy as np
import pandas as pd
os.chdir('C:\\Users\\dell\\Desktop')
print('work_directory: ', os.getcwd())
data = pd.read_excel('理事与会员名单.xlsx','理事与会员名单')
#1.载入excel,得到三个名单
ans_attend_set = set(data['回执参加']) #回执参会名单
N = len(ans_attend_set)
ans_notatt_idx = [i for i in range(N) if type(data['回执不参加'][i]) == np.float][0]
ans_notatt_set = set(data['回执不参加'][:ans_notatt_idx])#回执不参会名单
concil_idx = [i for i in range(N) if type(data['理事名单'][i]) == np.float][0]
concil_set = set(data['理事名单'][:concil_idx])  #理事名单
#2.统计理事参会情况
concil_attend_set = set([]) #理事回执参会名单
concil_notatt_set = set([]) #理事回执不参会名单
concil_notans_set = set([]) #理事未回执名单
for each in concil_set:
 if each in ans_attend_set:
 concil_attend_set.add(each)
 elif each in ans_notatt_set:
 concil_notatt_set.add(each)
 else:
 concil_notans_set.add(each)
#3. 显示结果
def disp(ss, cap, num = True):
 #ss: 名单集合
 #cap: 开头描述
 print(cap,'({})'.format(len(ss)))
 for i in range(np.ceil(len(ss)/5).astype(int)):
 pre = i * 5
 nex = (i+1) * 5
 #调整显示格式
 dd = ''
 for each in list(ss)[pre:nex]:
  if len(each) == 2:
  dd = dd + ' ' + each
  elif len(each) == 3:
  dd = dd + ' ' + each
  else:
  dd = dd + '' + each
 print('{:3.0f} -{:3.0f} {}'.format(i*5+1,(i+1)*5,dd))
disp(concil_attend_set,'\n参会理事')
disp(concil_notatt_set,'\n不参会理事')
disp(concil_notans_set,'\n未回执理事')
#4. 将理事参会情况,写入excel
df = pd.DataFrame(list(concil_attend_set),columns = ['参会理事'])
df['']=pd.DataFrame([''])
df['序号1'] = pd.DataFrame(np.arange(len(concil_notatt_set))+1)
df['不参会理事'] = pd.DataFrame(list(concil_notatt_set))
df['_']=pd.DataFrame([''])
df['序号2'] = pd.DataFrame(np.arange(len(concil_notans_set))+1)
df['未回执理事'] = pd.DataFrame(list(concil_notans_set))
df.index = df.index + 1
df.to_excel('理事和会员回执统计.xlsx', sheet_name='理事回执统计')
print('\n\n写入excel成功~~')

step_2

import os
import numpy as np
import pandas as pd
os.chdir('C:\\Users\\dell\\Desktop')
print('work_directory: ', os.getcwd())
data = pd.read_excel('理事与会员名单.xlsx','理事与会员名单')
#1.载入excel,得到三个名单
ans_attend_set = set(data['回执参加']) #回执参会名单
N = len(ans_attend_set)
ans_notatt_idx = [i for i in range(N) if type(data['回执不参加'][i]) == np.float][0]
ans_notatt_set = set(data['回执不参加'][:ans_notatt_idx])#回执不参会名单
mem_idx = [i for i in range(N) if type(data['被推荐人'][i]) == np.float][0]
mem_set = set(data['被推荐人'][:mem_idx])  #被推荐为会员代表名单
#2.统计会员参会情况
mem_attend_set = set([]) #回执参会会员
mem_notatt_set = set([]) #回执不参会会员
mem_notans_set = set([]) #未回执会员
for each in mem_set:
 if each in ans_attend_set:
 mem_attend_set.add(each)
 elif each in ans_notatt_set:
 mem_notatt_set.add(each)
 else:
 mem_notans_set.add(each)
#3. 显示结果
def disp(ss, cap, num = True):
 #ss: 名单集合
 #cap: 开头描述
 print(cap,'({})'.format(len(ss)))
 for i in range(np.ceil(len(ss)/5).astype(int)):
 pre = i * 5
 nex = (i+1) * 5
 #调整显示格式
 dd = ''
 for each in list(ss)[pre:nex]:
  if len(each) == 2:
  dd = dd + ' ' + each
  elif len(each) == 3:
  dd = dd + ' ' + each
  else:
  dd = dd + '' + each
 print('{:3.0f} -{:3.0f} {}'.format(i*5+1,(i+1)*5,dd))
disp(mem_attend_set,'\n参会会员')
disp(mem_notatt_set,'\n不参会会员')
disp(mem_notans_set,'\n未回执会员')
#4. 将会员参会情况,写入excel
if len(mem_attend_set) > len(mem_notans_set):
 print('#1')
 L = len(mem_attend_set)
 mem_notans_list = list(mem_notans_set)
 mem_notans_list.extend([''] * (L - len(mem_notans_set)))
 mem_attend_list = list(mem_attend_set)
else:
 print('#2')
 L = len(mem_notans_set)
 mem_attend_list = list(mem_attend_set)
 mem_attend_list.extend([''] * (L - len(mem_attend_set)))
 mem_notans_list = list(mem_notans_set) 
df = pd.DataFrame(mem_attend_list,columns = ['参会会员'])
df['']=pd.DataFrame([''])
if len(mem_notatt_set) == 0:
 df['序号1'] = np.NaN
 df['不参会会员'] = np.NaN
else:
 df['序号1'] = pd.DataFrame(np.arange(len(mem_notatt_set))+1)
 df['不参会会员'] = pd.DataFrame(list(mem_notatt_set))
df['_']=pd.DataFrame([''])
df['序号2'] = pd.DataFrame(np.arange(len(mem_notans_set))+1)
df['未回执会员'] = pd.DataFrame(mem_notans_list)
df.index = df.index + 1
df0 = pd.read_excel('理事和会员回执统计.xlsx',sheet_name='理事回执统计')
writer = pd.ExcelWriter('理事和会员回执统计.xlsx')
df0.to_excel(writer, sheet_name='理事回执统计')
df.to_excel(writer, sheet_name='会员回执统计')
writer.save()
print('\n\n写入excel成功~~')

version_4

version_4的改进在于将version_3中写入两张表格的操作,集成在一个程序里,只需要运行一次便可写入两张表,也总是会写入两张表。问题是要是你只想写入一张表呢??

import os
import numpy as np
import pandas as pd
os.chdir('C:\\Users\\dell\\Desktop')
print('work_directory: ', os.getcwd())
loadfile_sheet = ['理事与会员名单.xlsx','理事与会员名单']
columns = ['回执参加','回执不参加','理事','会员']
savefile_sheet = ['理事和会员回执统计.xlsx','理事回执统计','会员回执统计']
display = [1,1]
def main(loadfile_sheet,columns,savefile_sheet,display):
 #1. 载入excel,得到名单
 data = pd.read_excel(loadfile_sheet[0],loadfile_sheet[1])
 def first_nan_index(pd):
 for i, each in enumerate(pd):
  if type(each) == np.float:
  return i
 return i
 idx = first_nan_index(data[columns[0]])
 ans_attend_set = set(data[columns[0]][:idx])#回执参会名单
 idx = first_nan_index(data[columns[1]])
 ans_notatt_set = set(data[columns[1]][:idx])#回执不参会名单
 idx = first_nan_index(data[columns[2]])
 concil_set = set(data[columns[2]][:idx])#理事名单
 idx = first_nan_index(data[columns[3]])
 mem_set = set(data[columns[3]][:idx])#会员名单
 #2. 统计参会情况
 concil_attend_set = set([]) #回执参会理事
 concil_notatt_set = set([]) #回执不参会理事
 concil_notans_set = set([]) #未回执理事
 for each in concil_set:
 if each in ans_attend_set:
  concil_attend_set.add(each)
 elif each in ans_notatt_set:
  concil_notatt_set.add(each)
 else:
  concil_notans_set.add(each)
 mem_attend_set = set([]) #回执参会会员
 mem_notatt_set = set([]) #回执不参会会员
 mem_notans_set = set([]) #未回执会员
 for each in mem_set:
 if each in ans_attend_set:
  mem_attend_set.add(each)
 elif each in ans_notatt_set:
  mem_notatt_set.add(each)
 else:
  mem_notans_set.add(each)
 #3. 是否显示中间结果 
 def disp(ss, cap, num = True):
 #ss: 名单集合
 #cap: 开头描述
 print(cap,'({})'.format(len(ss)))
 for i in range(np.ceil(len(ss)/5).astype(int)):
  pre = i * 5
  nex = (i+1) * 5
  #调整显示格式
  dd = ''
  for each in list(ss)[pre:nex]:
  if len(each) == 2:
   dd = dd + ' ' + each
  elif len(each) == 3:
   dd = dd + ' ' + each
  else:
   dd = dd + '' + each
  print('{:3.0f} -{:3.0f} {}'.format(i*5+1,(i+1)*5,dd))
 if display[0]:
 disp(concil_attend_set,'\n参会理事')
 disp(concil_notatt_set,'\n不参会理事')
 disp(concil_notans_set,'\n未回执理事')
 if display[1]:
 disp(mem_attend_set,'\n参会会员')
 disp(mem_notatt_set,'\n不参会会员')
 disp(mem_notans_set,'\n未回执会员')
 #4. 写入excel
 def trans_pd(df,ss,cap,i=1):
 if len(ss) == 0:
  df['序号{}'.format(i)] = np.NaN
  df[cap] = np.NaN
 else:
  df['序号{}'.format(i)] = pd.DataFrame(np.arange(len(ss))+1)
  df[cap] = pd.DataFrame(list(ss))
 df['_'*i]=pd.DataFrame([''])
 return df
 def set2list(mem_attend_set,mem_notans_set):
 if len(mem_attend_set) > len(mem_notans_set):
  L = len(mem_attend_set)
  mem_notans_list = list(mem_notans_set)
  mem_notans_list.extend([''] * (L - len(mem_notans_set)))
  mem_attend_list = list(mem_attend_set)
 else:
  L = len(mem_notans_set)
  mem_attend_list = list(mem_attend_set)
  mem_attend_list.extend([''] * (L - len(mem_attend_set)))
  mem_notans_list = list(mem_notans_set)
 return mem_attend_list,mem_notans_list
 mem_attend_list, mem_notans_list = set2list(mem_attend_set, mem_notans_set) 
 df1 = pd.DataFrame(mem_attend_list,columns = ['参会会员'])
 df1['']=pd.DataFrame([''])
 df1 = trans_pd(df1,mem_notatt_set,'不参会会员')
 df1 = trans_pd(df1,mem_notans_set,'未回执会员',2)
 df1.index = df1.index + 1
 concil_attend_list, concil_notans_list = set2list(concil_attend_set, concil_notans_set)
 df2 = pd.DataFrame(concil_attend_list,columns = ['参会理事'])
 df2['']=pd.DataFrame([''])
 df2 = trans_pd(df2,concil_notatt_set,'不参会理事')
 df2 = trans_pd(df2,concil_notans_list,'未回执理事',2)
 df2.index = df2.index + 1
 writer = pd.ExcelWriter(savefile_sheet[0])
 df2.to_excel(writer, sheet_name=savefile_sheet[1])
 df1.to_excel(writer, sheet_name=savefile_sheet[2])
 writer.save()
 print('\n\n写入excel成功~~')
if __name__ == '__main__':
 main(loadfile_sheet,columns,savefile_sheet,display)

version_5

version_5对修复set中出现nan的方法进行了改进和简化; 而且将程序模块化,更具可读性; 可以自由控制写入多少张表了。

import os
import numpy as np
import pandas as pd
os.chdir('C:\\Users\\dell\\Desktop')
print('work_directory: ', os.getcwd())
loadfile_sheet = ['理事与会员名单.xlsx','理事与会员名单']
common_columns = ['回执参加','回执不参加']
concerned_columns = ['理事','会员']
disp_columns = ['参会','不参会','未回执']
savefile_sheet = ['理事和会员回执统计.xlsx','理事回执统计','会员回执统计']
def disp(ss, cap, num = True):
 #ss: 名单集合
 #cap: 开头描述
 print(cap,'({})'.format(len(ss)))
 for i in range(np.ceil(len(ss)/5).astype(int)):
 pre = i * 5
 nex = (i+1) * 5
 #调整显示格式
 dd = ''
 for each in list(ss)[pre:nex]:
  if len(each) == 2:
  dd = dd + ' ' + each
  elif len(each) == 3:
  dd = dd + ' ' + each
  else:
  dd = dd + '' + each
 print('{:3.0f} -{:3.0f} {}'.format(i*5+1,(i+1)*5,dd))
def trans_pd(df,ss,cap,i=1):
 df['_'*i]=pd.DataFrame([''])
 if len(ss) == 0:
 df['序号{}'.format(i)] = np.NaN
 df[cap] = np.NaN
 else:
 df['序号{}'.format(i)] = pd.DataFrame(np.arange(len(ss))+1)
 df[cap] = pd.DataFrame(list(ss)) 
 return df
def set2list(ss1,ss2):
 if len(ss1) > len(ss2):
 L = len(ss1)
 ss2_list = list(ss2)
 ss2_list.extend([''] * (L - len(ss2)))
 ss1_list = list(ss1)
 else:
 L = len(ss2)
 ss1_list = list(ss1)
 ss1_list.extend([''] * (L - len(ss1)))
 ss2_list = list(ss2)
 return ss1_list,ss2_list 
def get_df(loadfile_sheet,common_columns,concerned_column,disp_columns, display = True):
 #1. 载入excel
 data = pd.read_excel(loadfile_sheet[0],loadfile_sheet[1])
 common_set1 = set(data[common_columns[0]])
 common_set1.discard(np.NaN)
 common_set2 = set(data[common_columns[1]])
 common_set2.discard(np.NaN)
 concerned_set = set(data[concerned_column])
 concerned_set.discard(np.NaN)
 #2. 统计
 concerned_in_set_1 = set([])
 concerned_in_set_2 = set([])
 concerned_in_no_set = set([])
 for each in concerned_set:
 if each in common_set1:
  concerned_in_set_1.add(each)
 elif each in common_set2:
  concerned_in_set_2.add(each)
 else:
  concerned_in_no_set.add(each)
 #3. 显示
 if display:
 disp(concerned_in_set_1,'\n'+disp_columns[0]+concerned_column)
 disp(concerned_in_set_2,'\n'+disp_columns[1]+concerned_column)
 disp(concerned_in_no_set,'\n'+disp_columns[2]+concerned_column)
 #4. 返回DataFrame
 concerned_in_set_1_list, concerned_in_set_2_list = set2list(concerned_in_set_1, concerned_in_no_set) 
 df = pd.DataFrame(concerned_in_set_1_list,columns = [disp_columns[0]])
 df = trans_pd(df,concerned_in_set_2,disp_columns[1])
 df = trans_pd(df,concerned_in_no_set,disp_columns[2],2)
 df.index = df.index + 1
 return df
def save2excel(df, concerned_column, savefile_sheet):
 L = len(savefile_sheet) - 1
 idx = 0
 for i in np.arange(L)+1:
 if concerned_column in savefile_sheet[i]:
  idx = i
  break
 if idx != 0:  
 names = locals()
 for i in np.arange(L)+1:
  if i != idx:
  names['df%s' % i] = pd.read_excel(savefile_sheet[0], sheet_name=savefile_sheet[i])
 writer = pd.ExcelWriter(savefile_sheet[0])
 for i in np.arange(L)+1:
  if i != idx:
  names['df%s' % i].to_excel(writer, sheet_name=savefile_sheet[i])
  else:
  df.to_excel(writer, sheet_name=savefile_sheet[i])
 writer.save()
 else:  
 names = locals()
 for i in np.arange(L)+1:
  names['df%s' % i] = pd.read_excel(savefile_sheet[0], sheet_name=savefile_sheet[i])
 writer = pd.ExcelWriter(savefile_sheet[0])
 for i in np.arange(L)+1:
  names['df%s' % i].to_excel(writer, sheet_name=savefile_sheet[i])
 df.to_excel(writer, sheet_name=concerned_column)
 writer.save()
 print('writing success')
if __name__ == '__main__':
 for concerned_column in concerned_columns:
 df = get_df(loadfile_sheet,common_columns,
   concerned_column,disp_columns, display = True)
 save2excel(df, concerned_column, savefile_sheet)

version_final

相比较version_5,修复了一个bug,之前需要先验知识,现在更通用一点(prep函数取代了set2list函数)。

import os
import numpy as np
import pandas as pd
os.chdir('C:\\Users\\dell\\Desktop')
print('work_directory: ', os.getcwd())
loadfile_sheet = ['理事与会员名单.xlsx','理事与会员名单']
common_columns = ['回执参加','回执不参加']
concerned_columns = ['理事','会员']
disp_columns = ['参会','不参会','未回执']
savefile_sheet = ['理事和会员回执统计.xlsx','理事回执统计','会员回执统计']
def disp(ss, cap, num = True):
 #功能:显示名单
 #ss : 名单集合
 #cap :开头描述
 print(cap,'({})'.format(len(ss)))
 for i in range(np.ceil(len(ss)/5).astype(int)):
 pre = i * 5
 nex = (i+1) * 5
 #调整显示格式
 dd = ''
 for each in list(ss)[pre:nex]:
  if len(each) == 2:
  dd = dd + ' ' + each
  elif len(each) == 3:
  dd = dd + ' ' + each
  else:
  dd = dd + '' + each
 print('{:3.0f} -{:3.0f} {}'.format(i*5+1,(i+1)*5,dd))
def trans_pd(df,ll,cap,i=1):
 #功能:生成三列--空列、序号列、数据列
 #df : DataFrame结构
 #ll : 列表
 #cap : 显示的列名
 #i : 控制空列的名字
 df['_'*i]=pd.DataFrame([''])
 if len(set(ll)) == 1:
 df['序号{}'.format(i)] = np.NaN
 df[cap] = np.NaN
 else:
 df['序号{}'.format(i)] = pd.DataFrame(np.arange(len(set(ll))-1)+1)
 df[cap] = pd.DataFrame(ll) 
 return df
def prep(ss, N):
 #功能:预处理,生成列表,并补齐到长度N
 #ss : 集体
 #N :长度
 ll = list(ss)
 L = len(ll)
 ll.extend([np.NaN] * (N-L))
 return ll
def get_df(loadfile_sheet,common_columns,concerned_column,disp_columns, display = True):
 #1. 载入excel
 data = pd.read_excel(loadfile_sheet[0],loadfile_sheet[1]) 
 common_set1 = set(data[common_columns[0]])
 common_set2 = set(data[common_columns[1]]) 
 concerned_set = set(data[concerned_column])
 common_set1.discard(np.NaN)
 common_set2.discard(np.NaN)
 concerned_set.discard(np.NaN)
 #2. 统计
 concerned_in_set_1 = set([])
 concerned_in_set_2 = set([])
 concerned_in_no_set = set([])
 for each in concerned_set:
 if each in common_set1:
  concerned_in_set_1.add(each)
 elif each in common_set2:
  concerned_in_set_2.add(each)
 else:
  concerned_in_no_set.add(each)
 #3. 显示
 if display:
 disp(concerned_in_set_1,'\n'+disp_columns[0]+concerned_column)
 disp(concerned_in_set_2,'\n'+disp_columns[1]+concerned_column)
 disp(concerned_in_no_set,'\n'+disp_columns[2]+concerned_column)
 #4. 返回DataFrame
 N = np.max([len(concerned_in_set_1),len(concerned_in_set_2),len(concerned_in_no_set)])
 concerned_in_set_1_list = prep(concerned_in_set_1,N)
 concerned_in_set_2_list = prep(concerned_in_set_2,N)
 concerned_in_no_list = prep(concerned_in_no_set,N)
 df = pd.DataFrame(concerned_in_set_1_list,columns = [disp_columns[0]])
 df = trans_pd(df,concerned_in_set_2_list,disp_columns[1])
 df = trans_pd(df,concerned_in_no_list,disp_columns[2],2)
 df.index = df.index + 1
 return df
def save2excel(df, concerned_column, savefile_sheet):
 L = len(savefile_sheet) - 1
 idx = 0
 for i in np.arange(L)+1:
 if concerned_column in savefile_sheet[i]:
  idx = i
  break
 if idx != 0: #如果有对应sheet  
 names = locals()
 for i in np.arange(L)+1:
  if i != idx:
  names['df%s' % i] = pd.read_excel(savefile_sheet[0], sheet_name=savefile_sheet[i])
 writer = pd.ExcelWriter(savefile_sheet[0])
 for i in np.arange(L)+1:
  if i != idx:
  names['df%s' % i].to_excel(writer, sheet_name=savefile_sheet[i])
  else:
  df.to_excel(writer, sheet_name=savefile_sheet[i])
 writer.save()
 else: #如果没有对应sheet,创建一个新sheet  
 names = locals()
 for i in np.arange(L)+1:
  names['df%s' % i] = pd.read_excel(savefile_sheet[0], sheet_name=savefile_sheet[i])
 writer = pd.ExcelWriter(savefile_sheet[0])
 for i in np.arange(L)+1:
  names['df%s' % i].to_excel(writer, sheet_name=savefile_sheet[i])
 df.to_excel(writer, sheet_name=concerned_column)
 writer.save()
 print('writing success')
if __name__ == '__main__':
 for concerned_column in concerned_columns:
 df = get_df(loadfile_sheet,common_columns,
   concerned_column,disp_columns, display = True)
 save2excel(df, concerned_column, savefile_sheet)

以上这篇python实战之实现excel读取、统计、写入的示例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python实现从百度API获取天气的方法
Mar 11 Python
Python标准库urllib2的一些使用细节总结
Mar 16 Python
把MySQL表结构映射为Python中的对象的教程
Apr 07 Python
Python中转换角度为弧度的radians()方法
May 18 Python
Python 基于Twisted框架的文件夹网络传输源码
Aug 28 Python
关于python多重赋值的小问题
Apr 17 Python
Python3中的bytes和str类型详解
May 02 Python
python安装scipy的方法步骤
Jun 26 Python
python3正则模块re的使用方法详解
Feb 11 Python
Django之choices选项和富文本编辑器的使用详解
Apr 01 Python
通过cmd进入python的步骤
Jun 16 Python
Python使用Selenium实现淘宝抢单的流程分析
Jun 23 Python
python向已存在的excel中新增表,不覆盖原数据的实例
May 02 #Python
python excel使用xlutils类库实现追加写功能的方法
May 02 #Python
python 实现在Excel末尾增加新行
May 02 #Python
浅析Python数据处理
May 02 #Python
python pycurl验证basic和digest认证的方法
May 02 #Python
python解决js文件utf-8编码乱码问题(推荐)
May 02 #Python
用TensorFlow实现戴明回归算法的示例
May 02 #Python
You might like
法兰绒滤网冲泡
2021/03/03 冲泡冲煮
thinkphp中连接oracle时封装方法无法用的解决办法
2013/06/17 PHP
Yii核心组件AssetManager原理分析
2014/12/02 PHP
typecho插件编写教程(六):调用接口
2015/05/28 PHP
php生成图片验证码
2015/06/09 PHP
php简单判断两个字符串是否相等的方法
2015/07/13 PHP
php实现基于openssl的加密解密方法
2016/09/30 PHP
php使用file函数、fseek函数读取大文件效率对比分析
2016/11/04 PHP
PHPCrawl爬虫库实现抓取酷狗歌单的方法示例
2017/12/21 PHP
js/ajax跨越访问-jsonp的原理和实例(javascript和jquery实现代码)
2012/12/27 Javascript
jquery和javascript的区别(常用方法比较)
2013/07/04 Javascript
javascript强大的日期函数代码分享
2013/09/04 Javascript
node.js使用require()函数加载模块
2014/11/26 Javascript
Javascript中this关键字的一些小知识
2015/03/15 Javascript
JavaScript数据类型之基本类型和引用类型的值
2015/04/01 Javascript
jQuery取得iframe中元素的常用方法详解
2016/01/14 Javascript
JavaScript 对象字面量讲解
2016/06/06 Javascript
JS产生随机数的几个用法详解
2016/06/22 Javascript
JS区分Object与Aarry的六种方法总结
2017/02/27 Javascript
对angular4子路由&辅助路由详解
2018/10/09 Javascript
Element输入框带历史查询记录的实现示例
2019/01/15 Javascript
JS对象和字符串之间互换操作实例分析
2019/02/02 Javascript
vue实现树形结构样式和功能的实例代码
2019/10/15 Javascript
vue 使用 sortable 实现 el-table 拖拽排序功能
2020/12/26 Vue.js
Python Web框架Tornado运行和部署
2020/10/19 Python
Python模拟登录的多种方法(四种)
2018/06/01 Python
python爬虫框架scrapy实现模拟登录操作示例
2018/08/02 Python
Python编程中flask的简介与简单使用
2018/12/28 Python
python利用Opencv实现人脸识别功能
2019/04/25 Python
python3+PyQt5 使用三种不同的简便项窗口部件显示数据的方法
2019/06/17 Python
Python使用lambda抛出异常实现方法解析
2020/08/20 Python
美国高级工作服品牌:Carhartt
2018/01/25 全球购物
如何在Cookie里面保存Unicode和国际化字符
2013/05/25 面试题
安全教育心得体会
2013/12/29 职场文书
汽车机修工岗位职责
2014/03/06 职场文书
基层党员学习党的群众路线教育实践活动心得体会
2014/11/04 职场文书