python实现redis三种cas事务操作


Posted in Python onDecember 19, 2017

cas全称是compare and set,是一种典型的事务操作。

简单的说,事务就是为了存取数据库中同一数据时不破坏操作的隔离性和原子性,从而保证数据的一致性。

一般数据库,比如MySql是如何保证数据一致性的呢,主要是加锁,悲观锁。比如在访问数据库某条数据的时候,会用SELECT FOR UPDATE ,这MySql就会对这条数据进行加锁,直到事务被提交(COMMIT),或者回滚(ROLLBACK)。如果此时,有其他事务对被加锁的数据进行写入,那么该事务将会被阻塞,直到第一个事务完成为止。它的缺点在于:持有锁的事务运行越慢,等待解锁的事务阻塞时间就越长。并且容易产生死锁(前面有篇文章有讲解死锁)!

本文会介绍三种redis实现cas事务的方法,并会解决下面的虚拟问题:
维护一个值,如果这个值小于当前时间,则设置为当前时间;如果这个值大于当前时间,则设置为当前时间+30。简单的单线程环境下代码如下:

# 初始化
r = redis.Redis()
if not r.exists("key_test"):
  r.set("key_test", 0)

def inc():
  count = int(r.get('key_test')) + 30 #1
  # 如果值比当前时间小,则设置为当前时间
  count = max(count, int(time.time())) #2
  r.set('key_test', count) #3
  return count

很简单的一段代码,在单线程环境下可以跑的很欢,但显然,是无法移植到多线程或者是多进程环境的(进程A和B同时运行到#1,获取了相同的count值,然后运行#2#3,会导致count值总共只增加了30)。而为了能在多进程环境下运行,我们需要引入一些其他的东西。

py-redis本身自带的事务操作

redis有这么几个和事务相关的命令,multi,exec,watch。通过这几个命令,可以实现‘将多个命令打包,然后一次性、按顺序执行,且不会被终端'。事务会从MULTI开始,执行EXEC后触发事件。另外,我们还需要WATCH,watch可以监视任意数量的键,当在调用EXEC执行事务时,如果任意一个键被修改了,整个事务不会执行。

下边是使用redis本身的事务解决cas问题的代码。

class CasNormal(object):
  def __init__(self, host, key):
    self.r = redis.Redis(host)
    self.key = key
    if not self.r.exists(self.key):
      self.r.set(self.key, 0)

  def inc(self):
    with self.r.pipeline() as pipe:
      while True:
        try:
          #监视一个key,如果在执行期间被修改了,会抛出WatchError
          pipe.watch(self.key)
          next_count = 30 + int(pipe.get(self.key))
          pipe.multi()
          if next_count < int(time.time()):
            next_count = int(time.time())
          pipe.set(self.key, next_count)
          pipe.execute()
          return next_count
        except WatchError:
          continue
        finally:
          pipe.reset()

代码也不复杂,引入了之前说到的multi,exec,watch,如果对事务操作比较熟悉的同学,可以很容易看出来,这是一个乐观锁的操作(咱们假设没人竞争来着,每次去拿数据的时候都不会上锁,真有人来改了再说。)乐观锁在高并发的情况下会显得很无力,文末的性能对比会显示这个问题。

使用基于redis的悲观锁

悲观锁,就是很悲观的锁,每次拿数据都会假设别人也要拿,先给锁起来,用完再把锁释放掉。redis本身没有实现悲观锁,但我们可以先用redis实现一个悲观锁。

ok,咱们现在有悲观锁了,做起事来也有底气了,根据上边的代码,咱们只要加上@ synchronized注释就能保证同一时间只有一个进程在执行。下边是基于悲观锁的解决方案。

lock_conn = redis.Redis("localhost")

class CasLock(object):
  def __init__(self, host, key):
    self.r = redis.Redis(host)
    self.key = key
    if not self.r.exists(self.key):
      self.r.set(self.key, 0)

  @synchronized(lock_conn, "lock", 10)
  def inc(self):
    next_count = 30 + int(self.r.get(self.key))
    if next_count < int(time.time()):
      next_count = int(time.time())
    self.r.set(self.key, next_count)
    return next_count

代码看上去少多了(因为引入了synchronized...)

基于lua脚本实现

上边两种方法都是用锁来实现的,锁的实现总会出现竞争的问题,区别无非是出现竞争了咋办的问题。使用redis lua脚本的实现,可以直接把这个cas操作当成一个<b>原子操作</b>。

我们知道,redis本身的一系列操作,都是原子操作,且redis会按顺序执行所有收到的命令。先看代码

class CasLua(object):
  def __init__(self, host, key):
    self.r = redis.Redis(host)
    self.key = key
    if not self.r.exists(self.key):
      self.r.set(self.key, 0)
    self._lua = self.r.register_script("""
    local next_count = redis.call('get',KEYS[1]) + ARGV[1]
    ARGV[2] = tonumber(ARGV[2])
    if next_count < ARGV[2] then
      next_count = ARGV[2]
    end
    redis.call('set',KEYS[1],next_count)
    return tostring(next_count)
        """)

  def inc(self):
    return int(self._lua([self.key], [30, int(time.time())]))

这里先注册了这个脚本,后边可以直接去使用他。关于redis lua脚本的文章有不少,感兴趣的可以去搜搜看,这边就不赘述了。

性能对比

这边的测试只是一个非常简单的测试(不过还是能看出效果来的),测试换机就是自己的开发机,数字看个大小就行了。

分别测了三种操作在单线程,五个线程,十个线程,五十个线程情况下,进行1000次操作各自的表现,时间如下

optimistic Lock pessimistic lock  lua
1thread       0.43       0.71 0.35
5thread       5.80       3.10 0.62
10thread      17.80       5.60 1.30
50thread      245.00       29.60 6.50

依次是redis本身事务实现的乐观锁,基于redis实现的悲观锁以及lua实现。

在比较悲观锁和乐观锁之前,需要先说明一点,这边的测试对乐观锁不是很公平,乐观锁本身就是假设不会有很多的并发的。在单线程情况下,悲观锁要差一些。单线程下,不存在竞争关系,悲观锁耗时长仅因为是多了一次redis的网络交互。随着线程的增加,悲观锁的性能逐渐变好,毕竟悲观锁本身就是为了解决这种高并发高竞争的环境而诞生的。在50线程的时候,乐观锁的实现单次操作的时间要0.245秒,非常恐怖,如果是生产环境,几乎都不能用了。

至于lua的性能,快的不可思议,几乎就是线性增加。(50线程的情况下,平均的1000次完成时间是6.5s,换言之,6.5秒内执行了50 * 1000次cas操作)。

以上测试都是本地redis,本地测试,如果redis是远端的,网络交互时间会增加,lua优势会更加明显。希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python中引用与复制用法实例分析
Jun 04 Python
基于Python socket的端口扫描程序实例代码
Feb 09 Python
django 在原有表格添加或删除字段的实例
May 27 Python
利用Python进行数据可视化常见的9种方法!超实用!
Jul 11 Python
python实现维吉尼亚算法
Mar 20 Python
Python高级特性——详解多维数组切片(Slice)
Nov 26 Python
python上传时包含boundary时的解决方法
Apr 08 Python
Python基于正则表达式实现计算器功能
Jul 13 Python
Selenium python时间控件输入问题解决方案
Jul 22 Python
python实现粒子群算法
Oct 15 Python
用python制作个音乐下载器
Jan 30 Python
python b站视频下载的五种版本
May 27 Python
Python2/3中urllib库的一些常见用法
Dec 19 #Python
Python与人工神经网络:使用神经网络识别手写图像介绍
Dec 19 #Python
Python random模块用法解析及简单示例
Dec 18 #Python
Python方法的延迟加载的示例代码
Dec 18 #Python
Python字符串拼接六种方法介绍
Dec 18 #Python
Python Socket使用实例
Dec 18 #Python
浅谈python数据类型及类型转换
Dec 18 #Python
You might like
如何删除多级目录
2006/10/09 PHP
php之对抗Web扫描器的脚本技巧
2008/10/01 PHP
Php获取金书网的书名的实现代码
2010/06/11 PHP
Could not load type System.ServiceModel.Activation.HttpModule解决办法
2012/12/29 PHP
Zend Studio 实用快捷键一览表(精心整理)
2013/08/10 PHP
PHP中list()函数用法实例简析
2016/01/08 PHP
PHP中的数组处理函数实例总结
2016/01/09 PHP
php反序列化长度变化尾部字符串逃逸(0CTF-2016-piapiapia)
2020/02/15 PHP
走出JavaScript初学困境—js初学
2008/12/29 Javascript
从零开始学习jQuery (十一) 实战表单验证与自动完成提示插件
2011/02/23 Javascript
使用变量动态设置js的属性名
2014/10/19 Javascript
javascript中slice(),splice(),split(),substring(),substr()使用方法
2015/03/13 Javascript
跟我学习javascript的垃圾回收机制与内存管理
2015/11/23 Javascript
jQuery的each循环用法简单示例
2016/06/12 Javascript
JS查找英文文章中出现频率最高的单词
2017/03/20 Javascript
webpack 打包压缩js和css的方法示例
2018/03/20 Javascript
js使用formData实现批量上传
2020/03/27 Javascript
JavaScript中this的全面解析及常见实例
2019/05/14 Javascript
Vue中keep-alive组件的深入理解
2020/08/23 Javascript
谈谈node.js中的模块系统
2020/09/01 Javascript
[03:26]回顾2015国际邀请赛中国区预选赛
2015/06/09 DOTA
Python实现抓取网页并且解析的实例
2014/09/20 Python
详解Python中的__getitem__方法与slice对象的切片操作
2016/06/27 Python
浅谈Python中的可变对象和不可变对象
2017/07/07 Python
pytorch模型存储的2种实现方法
2020/02/14 Python
在CentOS7下安装Python3教程解析
2020/07/09 Python
pip已经安装好第三方库但pycharm中import时还是标红的解决方案
2020/10/09 Python
HTML5 canvas基本绘图之图形组合
2016/06/27 HTML / CSS
HTML5 LocalStorage 本地存储刷新值还在
2017/03/10 HTML / CSS
HTML5 Canvas 实现K线图的示例代码
2019/12/23 HTML / CSS
泰国汽车、火车和轮渡票预订网站:Bus Online Ticket
2017/09/09 全球购物
Joules官网:女士、男士和儿童服装和鞋类
2018/10/23 全球购物
三星加拿大官方网上商店:Samsung CA
2020/12/18 全球购物
实习协议书范本
2014/04/22 职场文书
设立有限责任公司出资协议书
2014/11/01 职场文书
使用Pytorch实现two-head(多输出)模型的操作
2021/05/28 Python