数据结构之利用PHP实现二分搜索树


Posted in PHP onOctober 25, 2020

前言

这篇文章是介绍 二叉树 和 二分搜索树,然后通过 PHP 代码定义一下 二分搜索树 的节点,使用递归思想操作向二分搜索树添加元素,然后实现了递归判断二分搜索树上是否包含某个元素,最后分别实现了前序遍历、中序遍历、后序遍历 二分搜索树。

1.二叉树

1.1 二叉树图示

数据结构之利用PHP实现二分搜索树

1.2 二叉树节点定义

//二叉树具有唯一根节点
class Node{
 $e; //节点元素
 $left; //左儿子
 $right;//右儿子
}

Tips:二叉树每个节点最多有两个儿子,每个节点最多有一个父亲。

1.3 二叉树的特点

  • 二叉树具有天然的递归结构,每个节点的左儿子或右儿子也是 二叉树。
  • 二叉树不一定是满的,可能只有左儿子或又儿子。
  • 一个节点或 NULL 也可以看做一个二叉树。

2.二分搜索树

2.1 二分搜索树特点

  • 二分搜索树是二叉树。
  • 每个节点的元素的值都要大于左儿子所有节点的值。
  • 每个节点的元素的值都要小于右儿子所有节点的值。
  • 每个子树也是二分搜索树。
  • 二分搜索树查询速度快。
  • 存储的元素必须要有比较性。

2.2 二分搜索树图示

数据结构之利用PHP实现二分搜索树

2.3 PHP 代码定义节点

class Node
{
 public $e;
 public $left = null;
 public $right = null;
 /**
  * 构造函数 初始化节点数据
  * Node constructor.
  * @param $e
  */
 public function __construct($e) {
  $this->e = $e;
 }
}

2.4 向二分搜索树添加元素

下面展示的的使用递归思想向二分搜索树添加元素,其中 add($e) 方法表示想二分搜索树添加元素 $e,recursionAdd(Node $root, $e) 是一个递归函数,表示使用递归向二分搜索树添加元素:

/**
  * 向二分搜索树添加元素
  * @param $e
  */
 public function add($e) {
  $this->root = $this->recursionAdd($this->root, $e);
 }
 /**
  * 递归向二分搜索树添加元素
  * @param Node $root
  * @param $e
  */
 public function recursionAdd(Node $root, $e) {
  if ($root == null) { //若节点为空则添加元素 并且返回当前节点信息
   $this->size++;
   $root = new Node($e);
  } elseif ($e < $root->e) { //若元素小于当前节点元素 则向左节点递归添加元素
   $root->left = $this->recursionAdd($root->left, $e);
  } elseif ($e > $root->e) { //若元素大于当前节点元素 则向右节点递归添加元素
   $root->right = $this->recursionAdd($root->right, $e);
  } //若元素等于当前节点元素 则什么都不做
 }

Tips:这里的二分搜索树不包含重复元素,如果想要包含重复元素,可以定义每个左儿子所有元素小于等于父亲节点,或者每个节点右儿子所有节点元素大于等于父亲节点。

2.5 查询二分搜索树是否包含某个元素

下面展示的的使用递归思想查询二分搜索树元素是否包含某个元素,其中 contains($e) 方法表示查询二分搜索树是否包含元素 $e,recursionContains(Node $root, $e) 是一个递归函数,表示使用递归查询二分搜索树元素:

/**
  * 判断二分搜索树是否包含某个元素
  * @param $e
  * @return bool
  */
 public function contains($e): bool {
  return $this->recursionContains($this->root, $e);
 }
 /**
  * 递归判断二分搜索树是否包含某元素
  * @param $root
  * @param $e
  * @return bool
  */
 private function recursionContains(Node $root, $e): bool {
  if ($root == null) { //若当前节点为空 则表示不存在元素 $e
   return false;
  } elseif ($e == $root->e) { //若 $e 等于当前节点元素,则表示树包含元素 $e
   return true;
  } elseif ($e < $root->e) { //若 $e 小于当前节点元素,则去左儿子树递归查询是否包含节点
   return $this->recursionContains($root->left, $e);
  } else { //若 $e 大于当前节点元素,则去右儿子树递归查询是否包含节点
   return $this->recursionContains($root->right, $e);
  }
 }

Tips:递归的时候会比较元素和节点的值,递归的时候判断元素大小相当于 “指路”,最终指向到的位置就是判断是否包含元素是否存在的依据。

2.6 二分搜索树前序遍历

前序遍历操作就是把所有节点都访问一次,前序遍历 是先访问节点,再递归遍历左儿子树,然后再递归遍历右儿子树:

/**
  * 前序遍历
  */
 public function preTraversal() {
  $this->recursionPreTraversal($this->root, 0);
 }
 /**
  * 前序遍历的递归
  */
 public function recursionPreTraversal($root, $sign_num) {
  echo $this->getSign($sign_num);//打印深度
  if ($root == null) {
   echo "null<br>";
   return;
  }
  echo $root->e . "<br>"; //打印当前节点元素
  $this->recursionPreTraversal($root->left, $sign_num + 1);
  $this->recursionPreTraversal($root->right, $sign_num + 1);
 }

下面是打印结果:

<?php
require 'BinarySearchTree.php';
$binarySearchTree = new BinarySearchTree();
$binarySearchTree->add(45);
$binarySearchTree->add(30);
$binarySearchTree->add(55);
$binarySearchTree->add(25);
$binarySearchTree->add(35);
$binarySearchTree->add(50);
$binarySearchTree->add(65);
$binarySearchTree->add(15);
$binarySearchTree->add(27);
$binarySearchTree->add(31);
$binarySearchTree->add(48);
$binarySearchTree->add(60);
$binarySearchTree->add(68);
//下面是预期想要的结果
/**
 *                     45
 *           /                  
 *          30                   55
 *        /                    /   
 *      25       35         50       65
 *     /       /          /       /  
 *   15   27  31         48       60     68
 *
 */
$binarySearchTree->preTraversal();
/**
打印输出
45
-----30
----------25
---------------15
--------------------null
--------------------null
---------------27
--------------------null
--------------------null
----------35
---------------31
--------------------null
--------------------null
---------------null
-----55
----------50
---------------48
--------------------null
--------------------null
---------------null
----------65
---------------60
--------------------null
--------------------null
---------------68
--------------------null
--------------------null
 */

Tips:可以看到打印输出结果和预期一致。

2.7 二分搜索树中序遍历

遍历操作就是把所有节点都访问一次,后序遍历 是先递归遍历右儿子树,再访问节点,然后再递归遍历右儿子树,最后的顺序输出结果是有序的:

/**
  * 中序遍历
  */
 public function midTraversal() {
  $this->recursionMidTraversal($this->root, 0);
 }
 /**
  * 中序遍历的递归
  */
 public function recursionMidTraversal($root, $sign_num) {
  if ($root == null) {
   echo $this->getSign($sign_num);//打印深度
   echo "null<br>";
   return;
  }
  $this->recursionMidTraversal($root->left, $sign_num + 1);
  echo $this->getSign($sign_num);//打印深度
  echo $root->e . "<br>";
  $this->recursionMidTraversal($root->right, $sign_num + 1);
 }

下面是打印结果:

<?php
require 'BinarySearchTree.php';
$binarySearchTree = new BinarySearchTree();
$binarySearchTree->add(45);
$binarySearchTree->add(30);
$binarySearchTree->add(55);
$binarySearchTree->add(25);
$binarySearchTree->add(35);
$binarySearchTree->add(50);
$binarySearchTree->add(65);
$binarySearchTree->add(15);
$binarySearchTree->add(27);
$binarySearchTree->add(31);
$binarySearchTree->add(48);
$binarySearchTree->add(60);
$binarySearchTree->add(68);
//下面是预期想要的结果
/**
 *                     45
 *           /                  
 *          30                   55
 *        /                    /   
 *      25       35         50       65
 *     /       /          /       /  
 *   15   27  31         48       60     68
 *
 */
$binarySearchTree->midTraversal();
/**
打印输出
--------------------null
---------------15
--------------------null
----------25
--------------------null
---------------27
--------------------null
-----30
--------------------null
---------------31
--------------------null
----------35
---------------null
45
--------------------null
---------------48
--------------------null
----------50
---------------null
-----55
--------------------null
---------------60
--------------------null
----------65
--------------------null
---------------68
--------------------null
 */

Tips:可以看到打印输出结果和预期一致,但是此时的遍历顺序变了,最后的顺序输出结果是有序的。

2.8 二分搜索树后序遍历

遍历操作就是把所有节点都访问一次,后序遍历 是先递归遍历左儿子树,然后再递归遍历右儿子树,再访问节点:

/**
  * 后序遍历
  */
 public function rearTraversal() {
  $this->recursionRearTraversal($this->root, 0);
 }
 /**
  * 后序遍历的递归
  */
 public function recursionRearTraversal($root, $sign_num) {
  if ($root == null) {
   echo $this->getSign($sign_num);//打印深度
   echo "null<br>";
   return;
  }
  $this->recursionRearTraversal($root->left, $sign_num + 1);
  $this->recursionRearTraversal($root->right, $sign_num + 1);
  echo $this->getSign($sign_num);//打印深度
  echo $root->e . "<br>";
 }

下面是打印结果:

<?php
require 'BinarySearchTree.php';
$binarySearchTree = new BinarySearchTree();
$binarySearchTree->add(45);
$binarySearchTree->add(30);
$binarySearchTree->add(55);
$binarySearchTree->add(25);
$binarySearchTree->add(35);
$binarySearchTree->add(50);
$binarySearchTree->add(65);
$binarySearchTree->add(15);
$binarySearchTree->add(27);
$binarySearchTree->add(31);
$binarySearchTree->add(48);
$binarySearchTree->add(60);
$binarySearchTree->add(68);
//下面是预期想要的结果
/**
 *                     45
 *           /                  
 *          30                   55
 *        /                    /   
 *      25       35         50       65
 *     /       /          /       /  
 *   15   27  31         48       60     68
 *
 */
$binarySearchTree->rearTraversal();
/**
打印输出
--------------------null
--------------------null
---------------15
--------------------null
--------------------null
---------------27
----------25
--------------------null
--------------------null
---------------31
---------------null
----------35
-----30
--------------------null
--------------------null
---------------48
---------------null
----------50
--------------------null
--------------------null
---------------60
--------------------null
--------------------null
---------------68
----------65
-----55
45
 */

代码仓库 :https://gitee.com/love-for-po...

总结

到此这篇关于数据结构之利用PHP实现二分搜索树的文章就介绍到这了,更多相关PHP实现二分搜索树内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

PHP 相关文章推荐
对盗链说再见...
Oct 09 PHP
PHP原理之异常机制深入分析
Aug 08 PHP
基于PHP CURL获取邮箱地址的详解
Jun 03 PHP
php数组去重复数据示例
Feb 25 PHP
php的mkdir()函数创建文件夹比较安全的权限设置方法
Jul 28 PHP
PHP把MSSQL数据导入到MYSQL的方法
Dec 27 PHP
实例详解PHP中html word 互转的方法
Jan 28 PHP
thinkphp项目部署到Linux服务器上报错“模板不存在”如何解决
Apr 27 PHP
php+html5+ajax实现上传图片的方法
May 14 PHP
Netbeans 8.2将支持PHP7 更精彩
Jun 13 PHP
Yii2中关联查询简单用法示例
Aug 10 PHP
PHP7下协程的实现方法详解
Dec 17 PHP
如何运行/调试你的PHP代码
Oct 23 #PHP
php redis setnx分布式锁简单原理解析
Oct 23 #PHP
PHP如何通过带尾指针的链表实现'队列'
Oct 22 #PHP
php使用event扩展的io复用测试的示例
Oct 20 #PHP
Aliyun Linux 编译安装 php7.3 tengine2.3.2 mysql8.0 redis5的过程详解
Oct 20 #PHP
phpcmsv9.0任意文件上传漏洞解析
Oct 20 #PHP
php实现记事本案例
Oct 20 #PHP
You might like
PHP出错界面
2006/10/09 PHP
如何给phpcms v9增加类似于phpcms 2008中的关键词表
2013/07/01 PHP
Drupal7 form表单二次开发要点与实例
2014/03/02 PHP
js sort 二维数组排序的用法小结
2014/01/24 Javascript
Javascript实现简单二级下拉菜单实例
2014/06/15 Javascript
JS合并数组的几种方法及优劣比较
2014/09/19 Javascript
JS使用eval解析JSON的注意事项分析
2015/11/14 Javascript
jQuery实现每隔几条元素增加1条线的方法
2016/06/27 Javascript
Vue.js实现实例搜索应用功能详细代码
2017/08/24 Javascript
浅谈Node.js CVE-2017-14849 漏洞分析(详细步骤)
2017/11/10 Javascript
vue router使用query和params传参的使用和区别
2017/11/13 Javascript
uniapp与webview之间的相互传值的实现
2020/06/29 Javascript
[01:23]2014DOTA2国际邀请赛 球迷无处不在Ti现场世界杯受关注
2014/07/10 DOTA
vc6编写python扩展的方法分享
2014/01/17 Python
go语言计算两个时间的时间差方法
2015/03/13 Python
Python批量重命名同一文件夹下文件的方法
2015/05/25 Python
[原创]教女朋友学Python3(二)简单的输入输出及内置函数查看
2017/11/30 Python
python深度优先搜索和广度优先搜索
2018/02/07 Python
对Tensorflow中的变量初始化函数详解
2018/07/27 Python
详解python实现识别手写MNIST数字集的程序
2018/08/03 Python
Python 使用PIL中的resize进行缩放的实例讲解
2018/08/03 Python
Python预测2020高考分数和录取情况
2020/07/08 Python
日本索尼音乐商店:Sony Music Shop
2018/07/17 全球购物
意大利灯具购物网站:Lampade.it
2018/10/18 全球购物
Diamondback自行车:拥有你的冒险
2019/04/22 全球购物
XMLHttpRequest对象在IE和Firefox中创建方式有没有不同
2016/03/23 面试题
写好自荐信的技巧
2013/11/08 职场文书
大学四年的个人自我评价
2014/01/14 职场文书
教师见习期自我鉴定
2014/04/28 职场文书
8和9的加减法教学反思
2014/05/01 职场文书
师范大学生求职信
2014/06/13 职场文书
2014年学习厉行节约反对浪费思想汇报
2014/09/10 职场文书
在教室放鞭炮的检讨书
2014/09/28 职场文书
设立有限责任公司出资协议书
2014/11/01 职场文书
教师求职自荐信范文
2015/03/04 职场文书
golang用type-switch判断interface的实际存储类型
2022/04/14 Golang