Redis延迟队列和分布式延迟队列的简答实现


Posted in Redis onMay 13, 2021

        最近,又重新学习了下Redis,Redis不仅能快还能慢,简直利器,今天就为大家介绍一下Redis延迟队列和分布式延迟队列的简单实现。

  在我们的工作中,很多地方使用延迟队列,比如订单到期没有付款取消订单,制订一个提醒的任务等都需要延迟队列,那么我们需要实现延迟队列。我们本文的梗概如下,同学们可以选择性阅读。

1. 实现一个简单的延迟队列。

  我们知道目前JAVA可以有DelayedQueue,我们首先开一个DelayQueue的结构类图。DelayQueue实现了Delay、BlockingQueue接口。也就是DelayQueue是一种阻塞队列。

Redis延迟队列和分布式延迟队列的简答实现

  我们在看一下Delay的类图。Delayed接口也实现了Comparable接口,也就是我们使用Delayed的时候需要实现CompareTo方法。因为队列中的数据需要排一下先后,根据我们自己的实现。Delayed接口里边有一个方法就是getDelay方法,用于获取延迟时间,判断是否时间已经到了延迟的时间,如果到了延迟的时间就可以从队列里边获取了。

Redis延迟队列和分布式延迟队列的简答实现

  我们创建一个Message类,实现了Delayed接口,我们主要把getDelay和compareTo进行实现。在Message的构造方法的地方传入延迟的时间,单位是毫秒,计算好触发时间fireTime。同时按照延迟时间的升序进行排序。我重写了里边的toString方法,用于将Message按照我写的方法进行输出。

package com.hqs.delayQueue.bean;

import java.util.concurrent.BlockingQueue;
import java.util.concurrent.DelayQueue;
import java.util.concurrent.Delayed;
import java.util.concurrent.TimeUnit;

/**
 * @author huangqingshi
 * @Date 2020-04-18
 */
public class Message implements Delayed {

    private String body;
    private long fireTime;

    public String getBody() {
        return body;
    }

    public long getFireTime() {
        return fireTime;
    }

    public Message(String body, long delayTime) {
        this.body = body;
        this.fireTime = delayTime + System.currentTimeMillis();
    }

    public long getDelay(TimeUnit unit) {

        return unit.convert(this.fireTime - System.currentTimeMillis(), TimeUnit.MILLISECONDS);
    }

    public int compareTo(Delayed o) {
        return (int) (this.getDelay(TimeUnit.MILLISECONDS) -o.getDelay(TimeUnit.MILLISECONDS));
    }

    @Override
    public String toString() {
        return System.currentTimeMillis() + ":" + body;
    }

    public static void main(String[] args) throws InterruptedException {
        System.out.println(System.currentTimeMillis() + ":start");
        BlockingQueue<Message> queue = new DelayQueue<>();
        Message message1 = new Message("hello", 1000 * 5L);
        Message message2 = new Message("world", 1000 * 7L);

        queue.put(message1);
        queue.put(message2);

        while (queue.size() > 0) {
            System.out.println(queue.take());
        }
    }
}

  里边的main方法里边声明了两个Message,一个延迟5秒,一个延迟7秒,时间到了之后会将接取出并且打印。输出的结果如下,正是我们所期望的。

1587218430786:start
1587218435789:hello
1587218437793:world

  这个方法实现起来真的非常简单。但是缺点也是很明显的,就是数据在内存里边,数据比较容易丢失。那么我们需要采用Redis实现分布式的任务处理。

  2. 使用Redis的list实现分布式延迟队列。

  本地需要安装一个Redis,我自己是使用Docker构建一个Redis,非常快速,命令也没多少。我们直接启动Redis并且暴露6379端口。进入之后直接使用客户端命令即可查看和调试数据。

docker pull redis
docker run -itd --name redisLocal -p 6379:6379 redis
docker exec -it redisLocal /bin/bash
redis-cli

  我本地采用spring-boot的方式连接redis,pom文件列一下,供大家参考。

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>2.2.6.RELEASE</version>
        <relativePath/> <!-- lookup parent from repository -->
    </parent>
    <groupId>com.hqs</groupId>
    <artifactId>delayQueue</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <name>delayQueue</name>
    <description>Demo project for Spring Boot</description>

    <properties>
        <java.version>1.8</java.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter</artifactId>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
            <exclusions>
                <exclusion>
                    <groupId>org.junit.vintage</groupId>
                    <artifactId>junit-vintage-engine</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-redis</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>redis.clients</groupId>
            <artifactId>jedis</artifactId>
            <version>2.9.0</version>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-devtools</artifactId>
            <scope>runtime</scope>
        </dependency>
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <optional>true</optional>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
            </plugin>
        </plugins>
    </build>

</project>

  加上Redis的配置放到application.properties里边即可实现Redis连接,非常的方便。

# redis
redis.host=127.0.0.1
redis.port=6379
redis.password=
redis.maxIdle=100
redis.maxTotal=300
redis.maxWait=10000
redis.testOnBorrow=true
redis.timeout=100000

  接下来实现一个基于Redis的list数据类型进行实现的一个类。我们使用RedisTemplate操作Redis,这个里边封装好我们所需要的Redis的一些方法,用起来非常方便。这个类允许延迟任务做多有10W个,也是避免数据量过大对Redis造成影响。如果在线上使用的时候也需要考虑延迟任务的多少。太多几百万几千万的时候可能数据量非常大,我们需要计算Redis的空间是否够。这个代码也是非常的简单,一个用于存放需要延迟的消息,采用offer的方法。另外一个是启动一个线程, 如果消息时间到了,那么就将数据lpush到Redis里边。

package com.hqs.delayQueue.cache;

import com.hqs.delayQueue.bean.Message;
import lombok.extern.slf4j.Slf4j;
import org.springframework.data.redis.core.RedisTemplate;

import java.util.concurrent.BlockingQueue;

/**
 * @author huangqingshi
 * @Date 2020-04-18
 */
@Slf4j
public class RedisListDelayedQueue{

    private static final int MAX_SIZE_OF_QUEUE = 100000;
    private RedisTemplate<String, String> redisTemplate;
    private String queueName;
    private BlockingQueue<Message> delayedQueue;

    public RedisListDelayedQueue(RedisTemplate<String, String> redisTemplate, String queueName, BlockingQueue<Message> delayedQueue) {
        this.redisTemplate = redisTemplate;
        this.queueName = queueName;
        this.delayedQueue = delayedQueue;
        init();
    }

    public void offerMessage(Message message) {
        if(delayedQueue.size() > MAX_SIZE_OF_QUEUE) {
            throw new IllegalStateException("超过队列要求最大值,请检查");
        }
        try {
            log.info("offerMessage:" + message);
            delayedQueue.offer(message);
        } catch (Exception e) {
            log.error("offMessage异常", e);
        }
    }

    public void init() {
        new Thread(() -> {
            while(true) {
                try {
                    Message message = delayedQueue.take();
                    redisTemplate.opsForList().leftPush(queueName, message.toString());
                } catch (InterruptedException e) {
                    log.error("取消息错误", e);
                }
            }
        }).start();
    }
}

  接下来我们看一下,我们写一个测试的controller。大家看一下这个请求/redis/listDelayedQueue的代码位置。我们也是生成了两个消息,然后把消息放到队列里边,另外我们在启动一个线程任务,用于将数据从Redis的list中获取。方法也非常简单。

package com.hqs.delayQueue.controller;

import com.hqs.delayQueue.bean.Message;
import com.hqs.delayQueue.cache.RedisListDelayedQueue;
import com.hqs.delayQueue.cache.RedisZSetDelayedQueue;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.ResponseBody;

import java.util.Set;
import java.util.concurrent.*;

/**
 * @author huangqingshi
 * @Date 2020-04-18
 */
@Slf4j
@Controller
public class DelayQueueController {

    private static final int CORE_SIZE = Runtime.getRuntime().availableProcessors();

    //注意RedisTemplate用的String,String,后续所有用到的key和value都是String的
    @Autowired
    RedisTemplate<String, String> redisTemplate;

    private static ThreadPoolExecutor taskExecPool = new ThreadPoolExecutor(CORE_SIZE, CORE_SIZE, 0, TimeUnit.SECONDS,
            new LinkedBlockingDeque<>());

    @GetMapping("/redisTest")
    @ResponseBody
    public String redisTest() {
        redisTemplate.opsForValue().set("a","b",60L, TimeUnit.SECONDS);
        System.out.println(redisTemplate.opsForValue().get("a"));
        return "s";
    }

    @GetMapping("/redis/listDelayedQueue")
    @ResponseBody
    public String listDelayedQueue() {

        Message message1 = new Message("hello", 1000 * 5L);
        Message message2 = new Message("world", 1000 * 7L);

        String queueName = "list_queue";

        BlockingQueue<Message> delayedQueue = new DelayQueue<>();

        RedisListDelayedQueue redisListDelayedQueue = new RedisListDelayedQueue(redisTemplate, queueName, delayedQueue);

        redisListDelayedQueue.offerMessage(message1);
        redisListDelayedQueue.offerMessage(message2);
        asyncListTask(queueName);

        return "success";
    }

    @GetMapping("/redis/zSetDelayedQueue")
    @ResponseBody
    public String zSetDelayedQueue() {

        Message message1 = new Message("hello", 1000 * 5L);
        Message message2 = new Message("world", 1000 * 7L);

        String queueName = "zset_queue";

        BlockingQueue<Message> delayedQueue = new DelayQueue<>();

        RedisZSetDelayedQueue redisZSetDelayedQueue = new RedisZSetDelayedQueue(redisTemplate, queueName, delayedQueue);

        redisZSetDelayedQueue.offerMessage(message1);
        redisZSetDelayedQueue.offerMessage(message2);
        asyncZSetTask(queueName);

        return "success";
    }

    public void asyncListTask(String queueName) {
        taskExecPool.execute(() -> {
            for(;;) {
                String message = redisTemplate.opsForList().rightPop(queueName);
                if(message != null) {
                    log.info(message);
                }
            }
        });
    }

    public void asyncZSetTask(String queueName) {
        taskExecPool.execute(() -> {
            for(;;) {
                Long nowTimeInMs = System.currentTimeMillis();
                System.out.println("nowTimeInMs:" + nowTimeInMs);
                Set<String> messages = redisTemplate.opsForZSet().rangeByScore(queueName, 0, nowTimeInMs);
                if(messages != null && messages.size() != 0) {
                    redisTemplate.opsForZSet().removeRangeByScore(queueName, 0, nowTimeInMs);
                    for (String message : messages) {
                        log.info("asyncZSetTask:" + message + " " + nowTimeInMs);
                    }
                    log.info(redisTemplate.opsForZSet().zCard(queueName).toString());
                }
                try {
                    TimeUnit.SECONDS.sleep(1);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        });
    }

}

  我就不把运行结果写出来了,感兴趣的同学自己自行试验。当然这个方法也是从内存中拿出数据,到时间之后放到Redis里边,还是会存在程序启动的时候,任务进行丢失。我们继续看另外一种方法更好的进行这个问题的处理。

3.使用Redis的zSet实现分布式延迟队列。

  我们需要再写一个ZSet的队列处理。下边的offerMessage主要是把消息直接放入缓存中。采用Redis的ZSET的zadd方法。zadd(key, value, score) 即将key=value的数据赋予一个score, 放入缓存中。score就是计算出来延迟的毫秒数。

package com.hqs.delayQueue.cache;

import com.hqs.delayQueue.bean.Message;
import lombok.extern.slf4j.Slf4j;
import org.springframework.data.redis.core.RedisTemplate;

import java.util.concurrent.BlockingQueue;

/**
 * @author huangqingshi
 * @Date 2020-04-18
 */
@Slf4j
public class RedisZSetDelayedQueue {

    private static final int MAX_SIZE_OF_QUEUE = 100000;
    private RedisTemplate<String, String> redisTemplate;
    private String queueName;
    private BlockingQueue<Message> delayedQueue;

    public RedisZSetDelayedQueue(RedisTemplate<String, String> redisTemplate, String queueName, BlockingQueue<Message> delayedQueue) {
        this.redisTemplate = redisTemplate;
        this.queueName = queueName;
        this.delayedQueue = delayedQueue;
    }

    public void offerMessage(Message message) {
        if(delayedQueue.size() > MAX_SIZE_OF_QUEUE) {
            throw new IllegalStateException("超过队列要求最大值,请检查");
        }
        long delayTime = message.getFireTime() - System.currentTimeMillis();
        log.info("zset offerMessage" + message + delayTime);
        redisTemplate.opsForZSet().add(queueName, message.toString(), message.getFireTime());
    }

}

  上边的Controller方法已经写好了测试的方法。/redis/zSetDelayedQueue,里边主要使用ZSet的zRangeByScore(key, min, max)。主要是从score从0,当前时间的毫秒数获取。取出数据后再采用removeRangeByScore,将数据删除。这样数据可以直接写到Redis里边,然后取出数据后直接处理。这种方法比前边的方法稍微好一些,但是实际上还存在一些问题,因为依赖Redis,如果Redis内存不足或者连不上的时候,系统将变得不可用。

4. 总结一下,另外还有哪些可以延迟队列。

  上面的方法其实还是存在问题的,比如系统重启的时候还是会造成任务的丢失。所以我们在生产上使用的时候,我们还需要将任务保存起来,比如放到数据库和文件存储系统将数据存储起来,这样做到double-check,双重检查,最终达到任务的99.999%能够处理。

  其实还有很多东西可以实现延迟队列。

  1) RabbitMQ就可以实现此功能。这个消息队列可以把数据保存起来并且进行处理。

  2)Kafka也可以实现这个功能。

  3)Netty的HashedWheelTimer也可以实现这个功能。

最后放上我的代码: https://github.com/stonehqs/delayQueue

到此这篇关于Redis延迟队列和分布式延迟队列的简答实现的文章就介绍到这了,更多相关Redis延迟队列和分布式延迟队列内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Redis 相关文章推荐
基于Redis延迟队列的实现代码
May 13 Redis
Redis做数据持久化的解决方案及底层原理
Jul 15 Redis
Redisson实现Redis分布式锁的几种方式
Aug 07 Redis
解决Redis启动警告问题
Feb 24 Redis
Redis中有序集合的内部实现方式的详细介绍
Mar 16 Redis
解决redis批量删除key值的问题
Mar 23 Redis
Redis如何使用乐观锁(CAS)保证数据一致性
Mar 25 Redis
基于Redis6.2.6版本部署Redis Cluster集群的问题
Apr 01 Redis
Grafana可视化监控系统结合SpringBoot使用
Apr 19 Redis
Redis数据同步之redis shake的实现方法
Apr 21 Redis
Redis 异步机制
May 15 Redis
利用Redis实现点赞功能的示例代码
Jun 28 Redis
基于Redis延迟队列的实现代码
基于Redis实现分布式锁的方法(lua脚本版)
redis三种高可用方式部署的实现
May 11 #Redis
Redis数据结构之链表与字典的使用
基于Redis位图实现用户签到功能
May 08 #Redis
基于Redis过期事件实现订单超时取消
May 08 #Redis
Redis实现订单自动过期功能的示例代码
May 08 #Redis
You might like
基于mysql的bbs设计(二)
2006/10/09 PHP
在PHP中养成7个面向对象的好习惯
2010/07/17 PHP
PHP实现提取一个图像文件并在浏览器上显示的代码
2012/10/06 PHP
PHP内置加密函数详解
2016/11/20 PHP
PHP面向对象程序设计继承用法简单示例
2018/12/28 PHP
use jscript List Installed Software
2007/06/11 Javascript
Extjs Ajax 乱码问题解决方案
2009/04/15 Javascript
浅析Prototype的模板类 Template
2011/12/07 Javascript
js二维数组定义和初始化的三种方法总结
2014/03/03 Javascript
js的toLowerCase方法用法实例
2015/01/27 Javascript
avalonjs实现仿微博的图片拖动特效
2015/05/06 Javascript
javascript拖拽效果延伸学习
2016/04/04 Javascript
ES6中的数组扩展方法
2016/08/26 Javascript
Javascript使用function创建类的两种方法(推荐)
2016/11/19 Javascript
Vue 2.x教程之基础API
2017/03/06 Javascript
Vue的百度地图插件尝试使用
2017/09/06 Javascript
JavaScript实现多态和继承的封装操作示例
2018/08/20 Javascript
Node.js API详解之 zlib模块用法分析
2020/05/19 Javascript
解决vuex数据页面刷新后初始化操作
2020/07/26 Javascript
JS实现炫酷轮播图
2020/11/15 Javascript
JS hasOwnProperty()方法检测一个属性是否是对象的自有属性的方法
2021/01/29 Javascript
布同自制Python函数帮助查询小工具
2011/03/13 Python
python删除过期文件的方法
2015/05/29 Python
启动targetcli时遇到错误解决办法
2017/10/26 Python
PYQT5设置textEdit自动滚屏的方法
2019/06/14 Python
python中对_init_的理解及实例解析
2019/10/11 Python
jupyter修改文件名方式(TensorFlow)
2020/04/21 Python
python 用struct模块解决黏包问题
2020/11/07 Python
英国领先的葡萄酒专家:Majestic Wine
2017/05/30 全球购物
Genny意大利官网:意大利高级时装品牌
2020/04/15 全球购物
桥梁与隧道工程专业本科生求职信
2013/10/08 职场文书
电子商务个人自荐信
2013/12/12 职场文书
大学生关于奋斗的演讲稿
2014/01/09 职场文书
收款委托书范本
2014/09/11 职场文书
学校运动会广播稿范文
2014/10/02 职场文书
2014年幼师工作总结
2014/11/22 职场文书