python实现KNN近邻算法


Posted in Python onDecember 30, 2020

示例:《电影类型分类》

获取数据来源

电影名称 打斗次数 接吻次数 电影类型
California Man 3 104 Romance
He's Not Really into Dudes 8 95 Romance
Beautiful Woman 1 81 Romance
Kevin Longblade 111 15 Action
Roob Slayer 3000 99 2 Action
Amped II 88 10 Action
Unknown 18 90 unknown

数据显示:肉眼判断电影类型unknown是什么

from matplotlib import pyplot as plt
​
# 用来正常显示中文标签
plt.rcParams["font.sans-serif"] = ["SimHei"]
# 电影名称
names = ["California Man", "He's Not Really into Dudes", "Beautiful Woman",
   "Kevin Longblade", "Robo Slayer 3000", "Amped II", "Unknown"]
# 类型标签
labels = ["Romance", "Romance", "Romance", "Action", "Action", "Action", "Unknown"]
colors = ["darkblue", "red", "green"]
colorDict = {label: color for (label, color) in zip(set(labels), colors)}
print(colorDict)
# 打斗次数,接吻次数
X = [3, 8, 1, 111, 99, 88, 18]
Y = [104, 95, 81, 15, 2, 10, 88]
​
plt.title("通过打斗次数和接吻次数判断电影类型", fontsize=18)
plt.xlabel("电影中打斗镜头出现的次数", fontsize=16)
plt.ylabel("电影中接吻镜头出现的次数", fontsize=16)
​
# 绘制数据
for i in range(len(X)):
 # 散点图绘制
 plt.scatter(X[i], Y[i], color=colorDict[labels[i]])
​
# 每个点增加描述信息
for i in range(0, 7):
 plt.text(X[i]+2, Y[i]-1, names[i], fontsize=14)
​
plt.show()

问题分析:根据已知信息分析电影类型unknown是什么

核心思想:

未标记样本的类别由距离其最近的K个邻居的类别决定

距离度量:

一般距离计算使用欧式距离(用勾股定理计算距离),也可以采用曼哈顿距离(水平上和垂直上的距离之和)、余弦值和相似度(这是距离的另一种表达方式)。相比于上述距离,马氏距离更为精确,因为它能考虑很多因素,比如单位,由于在求协方差矩阵逆矩阵的过程中,可能不存在,而且若碰见3维及3维以上,求解过程中极其复杂,故可不使用马氏距离

知识扩展

  • 马氏距离概念:表示数据的协方差距离
  • 方差:数据集中各个点到均值点的距离的平方的平均值
  • 标准差:方差的开方
  • 协方差cov(x, y):E表示均值,D表示方差,x,y表示不同的数据集,xy表示数据集元素对应乘积组成数据集

cov(x, y) = E(xy) - E(x)*E(y)

cov(x, x) = D(x)

cov(x1+x2, y) = cov(x1, y) + cov(x2, y)

cov(ax, by) = abcov(x, y)

  • 协方差矩阵:根据维度组成的矩阵,假设有三个维度,a,b,c

∑ij = [cov(a, a) cov(a, b) cov(a, c) cov(b, a) cov(b,b) cov(b, c) cov(c, a) cov(c, b) cov(c, c)]

算法实现:欧氏距离

编码实现

# 自定义实现 mytest1.py
import numpy as np
​
# 创建数据集
def createDataSet():
 features = np.array([[3, 104], [8, 95], [1, 81], [111, 15],
       [99, 2], [88, 10]])
 labels = ["Romance", "Romance", "Romance", "Action", "Action", "Action"]
 return features, labels
​
def knnClassify(testFeature, trainingSet, labels, k):
 """
 KNN算法实现,采用欧式距离
 :param testFeature: 测试数据集,ndarray类型,一维数组
 :param trainingSet: 训练数据集,ndarray类型,二维数组
 :param labels: 训练集对应标签,ndarray类型,一维数组
 :param k: k值,int类型
 :return: 预测结果,类型与标签中元素一致
 """
 dataSetsize = trainingSet.shape[0]
 """
 构建一个由dataSet[i] - testFeature的新的数据集diffMat
 diffMat中的每个元素都是dataSet中每个特征与testFeature的差值(欧式距离中差)
 """
 testFeatureArray = np.tile(testFeature, (dataSetsize, 1))
 diffMat = testFeatureArray - trainingSet
 # 对每个差值求平方
 sqDiffMat = diffMat ** 2
 # 计算dataSet中每个属性与testFeature的差的平方的和
 sqDistances = sqDiffMat.sum(axis=1)
 # 计算每个feature与testFeature之间的欧式距离
 distances = sqDistances ** 0.5
​
 """
 排序,按照从小到大的顺序记录distances中各个数据的位置
 如distance = [5, 9, 0, 2]
 则sortedStance = [2, 3, 0, 1]
 """
 sortedDistances = distances.argsort()
​
 # 选择距离最小的k个点
 classCount = {}
 for i in range(k):
  voteiLabel = labels[list(sortedDistances).index(i)]
  classCount[voteiLabel] = classCount.get(voteiLabel, 0) + 1
 # 对k个结果进行统计、排序,选取最终结果,将字典按照value值从大到小排序
 sortedclassCount = sorted(classCount.items(), key=lambda x: x[1], reverse=True)
 return sortedclassCount[0][0]
​
testFeature = np.array([100, 200])
features, labels = createDataSet()
res = knnClassify(testFeature, features, labels, 3)
print(res)
# 使用python包实现 mytest2.py
from sklearn.neighbors import KNeighborsClassifier
from .mytest1 import createDataSet
​
features, labels = createDataSet()
k = 5
clf = KNeighborsClassifier(k_neighbors=k)
clf.fit(features, labels)
​
# 样本值
my_sample = [[18, 90]]
res = clf.predict(my_sample)
print(res)

示例:《交友网站匹配效果预测》

数据来源:略

数据显示

import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
​
# 数据加载
def loadDatingData(file):
 datingData = pd.read_table(file, header=None)
 datingData.columns = ["FlightDistance", "PlaytimePreweek", "IcecreamCostPreweek", "label"]
 datingTrainData = np.array(datingData[["FlightDistance", "PlaytimePreweek", "IcecreamCostPreweek"]])
 datingTrainLabel = np.array(datingData["label"])
 return datingData, datingTrainData, datingTrainLabel
​
# 3D图显示数据
def dataView3D(datingTrainData, datingTrainLabel):
 plt.figure(1, figsize=(8, 3))
 plt.subplot(111, projection="3d")
 plt.scatter(np.array([datingTrainData[x][0]
       for x in range(len(datingTrainLabel))
       if datingTrainLabel[x] == "smallDoses"]),
    np.array([datingTrainData[x][1]
       for x in range(len(datingTrainLabel))
       if datingTrainLabel[x] == "smallDoses"]),
    np.array([datingTrainData[x][2]
       for x in range(len(datingTrainLabel))
       if datingTrainLabel[x] == "smallDoses"]), c="red")
 plt.scatter(np.array([datingTrainData[x][0]
       for x in range(len(datingTrainLabel))
       if datingTrainLabel[x] == "didntLike"]),
    np.array([datingTrainData[x][1]
       for x in range(len(datingTrainLabel))
       if datingTrainLabel[x] == "didntLike"]),
    np.array([datingTrainData[x][2]
       for x in range(len(datingTrainLabel))
       if datingTrainLabel[x] == "didntLike"]), c="green")
 plt.scatter(np.array([datingTrainData[x][0]
       for x in range(len(datingTrainLabel))
       if datingTrainLabel[x] == "largeDoses"]),
    np.array([datingTrainData[x][1]
       for x in range(len(datingTrainLabel))
       if datingTrainLabel[x] == "largeDoses"]),
    np.array([datingTrainData[x][2]
       for x in range(len(datingTrainLabel))
       if datingTrainLabel[x] == "largeDoses"]), c="blue")
 plt.xlabel("飞行里程数", fontsize=16)
 plt.ylabel("视频游戏耗时百分比", fontsize=16)
 plt.clabel("冰淇凌消耗", fontsize=16)
 plt.show()
 
datingData, datingTrainData, datingTrainLabel = loadDatingData(FILEPATH1)
datingView3D(datingTrainData, datingTrainLabel)

问题分析:抽取数据集的前10%在数据集的后90%进行测试

编码实现

# 自定义方法实现
import pandas as pd
import numpy as np
​
# 数据加载
def loadDatingData(file):
 datingData = pd.read_table(file, header=None)
 datingData.columns = ["FlightDistance", "PlaytimePreweek", "IcecreamCostPreweek", "label"]
 datingTrainData = np.array(datingData[["FlightDistance", "PlaytimePreweek", "IcecreamCostPreweek"]])
 datingTrainLabel = np.array(datingData["label"])
 return datingData, datingTrainData, datingTrainLabel
​
# 数据归一化
def autoNorm(datingTrainData):
 # 获取数据集每一列的最值
 minValues, maxValues = datingTrainData.min(0), datingTrainData.max(0)
 diffValues = maxValues - minValues
 
 # 定义形状和datingTrainData相似的最小值矩阵和差值矩阵
 m = datingTrainData.shape(0)
 minValuesData = np.tile(minValues, (m, 1))
 diffValuesData = np.tile(diffValues, (m, 1))
 normValuesData = (datingTrainData-minValuesData)/diffValuesData
 return normValuesData
​
# 核心算法实现
def KNNClassifier(testData, trainData, trainLabel, k):
 m = trainData.shape(0)
 testDataArray = np.tile(testData, (m, 1))
 diffDataArray = (testDataArray - trainData) ** 2
 sumDataArray = diffDataArray.sum(axis=1) ** 0.5
 # 对结果进行排序
 sumDataSortedArray = sumDataArray.argsort()
 
 classCount = {}
 for i in range(k):
  labelName = trainLabel[list(sumDataSortedArray).index(i)]
  classCount[labelName] = classCount.get(labelName, 0)+1
 classCount = sorted(classCount.items(), key=lambda x: x[1], reversed=True)
 return classCount[0][0]
 
​
# 数据测试
def datingTest(file):
 datingData, datingTrainData, datingTrainLabel = loadDatingData(file)
 normValuesData = autoNorm(datingTrainData)
 
 
 errorCount = 0
 ratio = 0.10
 total = datingTrainData.shape(0)
 numberTest = int(total * ratio)
 for i in range(numberTest):
  res = KNNClassifier(normValuesData[i], normValuesData[numberTest:m], datingTrainLabel, 5)
  if res != datingTrainLabel[i]:
   errorCount += 1
 print("The total error rate is : {}\n".format(error/float(numberTest)))
​
if __name__ == "__main__":
 FILEPATH = "./datingTestSet1.txt"
 datingTest(FILEPATH)
# python 第三方包实现
import pandas as pd
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
​
if __name__ == "__main__":
 FILEPATH = "./datingTestSet1.txt"
 datingData, datingTrainData, datingTrainLabel = loadDatingData(FILEPATH)
 normValuesData = autoNorm(datingTrainData)
 errorCount = 0
 ratio = 0.10
 total = normValuesData.shape[0]
 numberTest = int(total * ratio)
 
 k = 5
 clf = KNeighborsClassifier(n_neighbors=k)
 clf.fit(normValuesData[numberTest:total], datingTrainLabel[numberTest:total])
 
 for i in range(numberTest):
  res = clf.predict(normValuesData[i].reshape(1, -1))
  if res != datingTrainLabel[i]:
   errorCount += 1
 print("The total error rate is : {}\n".format(errorCount/float(numberTest)))

以上就是python实现KNN近邻算法的详细内容,更多关于python实现KNN近邻算法的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
举例讲解Python中装饰器的用法
Apr 27 Python
python中lambda()的用法
Nov 16 Python
轻松实现TensorFlow微信跳一跳的AI
Jan 05 Python
python 接口返回的json字符串实例
Mar 27 Python
解析Python的缩进规则的使用
Jan 16 Python
python3实现二叉树的遍历与递归算法解析(小结)
Jul 03 Python
python函数的万能参数传参详解
Jul 26 Python
python matplotlib拟合直线的实现
Nov 19 Python
Python使用Tkinter实现转盘抽奖器的步骤详解
Jan 06 Python
解决pyinstaller打包运行程序时出现缺少plotly库问题
Jun 02 Python
python为什么会环境变量设置不成功
Jun 23 Python
Python爬虫之Selenium库的使用方法
Jan 03 Python
python 实现逻辑回归
Dec 30 #Python
Python 随机按键模拟2小时
Dec 30 #Python
Python的scikit-image模块实例讲解
Dec 30 #Python
用Python实现职工信息管理系统
Dec 30 #Python
python实现双人五子棋(终端版)
Dec 30 #Python
pandas 数据类型转换的实现
Dec 29 #Python
python中xlutils库用法浅析
Dec 29 #Python
You might like
codeigniter框架批量插入数据
2014/01/09 PHP
PHP+jQuery 注册模块开发详解
2014/10/14 PHP
PHP5.3新特性小结
2016/02/14 PHP
php用户登录之cookie信息安全分析
2016/05/13 PHP
php封装的page分页类完整实例代码
2020/02/01 PHP
巧妙破除网页右键禁用的十大绝招
2006/08/12 Javascript
基于jQuery的日期选择控件
2009/10/27 Javascript
alert和confirm功能介绍
2014/05/21 Javascript
了不起的node.js读书笔记之例程分析
2014/12/22 Javascript
使用ngView配合AngularJS应用实现动画效果的方法
2015/06/19 Javascript
js闭包所用的场合以及优缺点分析
2015/06/22 Javascript
js如何判断访问是来自搜索引擎(蜘蛛人)还是直接访问
2015/09/14 Javascript
JavaScript类型系统之Object详解
2016/01/07 Javascript
基于RequireJS和JQuery的模块化编程日常问题解析
2016/04/14 Javascript
js实现无缝循环滚动
2020/06/23 Javascript
mui上拉加载更多下拉刷新数据的封装过程
2017/11/03 Javascript
详解Node 定时器
2018/02/26 Javascript
记一次vue去除#问题处理经过小结
2019/01/24 Javascript
Vue多组件仓库开发与发布详解
2019/02/28 Javascript
解决vue-loader加载不上的问题
2020/10/21 Javascript
python选择排序算法实例总结
2015/07/01 Python
pycharm 将django中多个app放到同个文件夹apps的处理方法
2018/05/30 Python
对Python subprocess.Popen子进程管道阻塞详解
2018/10/29 Python
python使用插值法画出平滑曲线
2018/12/15 Python
TensorFlow实现自定义Op方式
2020/02/04 Python
Django bulk_create()、update()与数据库事务的效率对比分析
2020/05/15 Python
PyTorch预训练Bert模型的示例
2020/11/17 Python
解决Pyinstaller打包软件失败的一个坑
2021/03/04 Python
纯css3制作的火影忍者写轮眼开眼至轮回眼及进化过程实例
2014/11/11 HTML / CSS
详解CSS3新增的背景属性
2019/12/25 HTML / CSS
HelloFresh奥地利:立即订购烹饪盒
2019/02/22 全球购物
陈欧广告词
2014/03/14 职场文书
2014年秋季开学演讲稿
2014/05/24 职场文书
我的中国梦演讲稿300字
2014/08/19 职场文书
青涩记忆观后感
2015/06/18 职场文书
阿里云服务器部署RabbitMQ集群的详细教程
2022/06/01 Servers