keras-siamese用自己的数据集实现详解


Posted in Python onJune 10, 2020

Siamese网络不做过多介绍,思想并不难,输入两个图像,输出这两张图像的相似度,两个输入的网络结构是相同的,参数共享。

主要发现很多代码都是基于mnist数据集的,下面说一下怎么用自己的数据集实现siamese网络。

首先,先整理数据集,相同的类放到同一个文件夹下,如下图所示:

keras-siamese用自己的数据集实现详解

接下来,将pairs及对应的label写到csv中,代码如下:

import os
import random
import csv
#图片所在的路径
path = '/Users/mac/Desktop/wxd/flag/category/'
#files列表保存所有类别的路径
files=[]
same_pairs=[]
different_pairs=[]
for file in os.listdir(path):
 if file[0]=='.':
  continue
 file_path = os.path.join(path,file)
 files.append(file_path)
#该地址为csv要保存到的路径,a表示追加写入
with open('/Users/mac/Desktop/wxd/flag/data.csv','a') as f:
 #保存相同对
 writer = csv.writer(f)
 for file in files:
  imgs = os.listdir(file) 
  for i in range(0,len(imgs)-1):
   for j in range(i+1,len(imgs)):
    pairs = []
    name = file.split(sep='/')[-1]
    pairs.append(path+name+'/'+imgs[i])
    pairs.append(path+name+'/'+imgs[j])
    pairs.append(1)
    writer.writerow(pairs)
 #保存不同对
 for i in range(0,len(files)-1):
  for j in range(i+1,len(files)):
   filea = files[i]
   fileb = files[j]
   imga_li = os.listdir(filea)
   imgb_li = os.listdir(fileb)
   random.shuffle(imga_li)
   random.shuffle(imgb_li)
   a_li = imga_li[:]
   b_li = imgb_li[:]
   for p in range(len(a_li)):
    for q in range(len(b_li)):
     pairs = []
     name1 = filea.split(sep='/')[-1]
     name2 = fileb.split(sep='/')[-1]
     pairs.append(path+name1+'/'+a_li[p])
     pairs.append(path+name2+'/'+b_li[q])
     pairs.append(0)
     writer.writerow(pairs)

相当于csv每一行都包含一对结果,每一行有三列,第一列第一张图片路径,第二列第二张图片路径,第三列是不是相同的label,属于同一个类的label为1,不同类的为0,可参考下图:

keras-siamese用自己的数据集实现详解

然后,由于keras的fit函数需要将训练数据都塞入内存,而大部分训练数据都较大,因此才用fit_generator生成器的方法,便可以训练大数据,代码如下:

from __future__ import absolute_import
from __future__ import print_function
import numpy as np
from keras.models import Model
from keras.layers import Input, Dense, Dropout, BatchNormalization, Conv2D, MaxPooling2D, AveragePooling2D, concatenate, \
 Activation, ZeroPadding2D
from keras.layers import add, Flatten
from keras.utils import plot_model
from keras.metrics import top_k_categorical_accuracy
from keras.preprocessing.image import ImageDataGenerator
from keras.models import load_model
import tensorflow as tf
import random
import os
import cv2
import csv
import numpy as np
from keras.models import Model
from keras.layers import Input, Flatten, Dense, Dropout, Lambda
from keras.optimizers import RMSprop
from keras import backend as K
from keras.callbacks import ModelCheckpoint
from keras.preprocessing.image import img_to_array
 
"""
自定义的参数
"""
im_width = 224
im_height = 224
epochs = 100
batch_size = 64
iterations = 1000
csv_path = ''
model_result = ''
 
 
# 计算欧式距离
def euclidean_distance(vects):
 x, y = vects
 sum_square = K.sum(K.square(x - y), axis=1, keepdims=True)
 return K.sqrt(K.maximum(sum_square, K.epsilon()))
 
def eucl_dist_output_shape(shapes):
 shape1, shape2 = shapes
 return (shape1[0], 1)
 
# 计算loss
def contrastive_loss(y_true, y_pred):
 '''Contrastive loss from Hadsell-et-al.'06
 http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
 '''
 margin = 1
 square_pred = K.square(y_pred)
 margin_square = K.square(K.maximum(margin - y_pred, 0))
 return K.mean(y_true * square_pred + (1 - y_true) * margin_square)
 
def compute_accuracy(y_true, y_pred):
 '''计算准确率
 '''
 pred = y_pred.ravel() < 0.5
 print('pred:', pred)
 return np.mean(pred == y_true)
 
def accuracy(y_true, y_pred):
 '''Compute classification accuracy with a fixed threshold on distances.
 '''
 return K.mean(K.equal(y_true, K.cast(y_pred < 0.5, y_true.dtype)))
 
def processImg(filename):
 """
 :param filename: 图像的路径
 :return: 返回的是归一化矩阵
 """
 img = cv2.imread(filename)
 img = cv2.resize(img, (im_width, im_height))
 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
 img = img_to_array(img)
 img /= 255
 return img
 
def Conv2d_BN(x, nb_filter, kernel_size, strides=(1, 1), padding='same', name=None):
 if name is not None:
  bn_name = name + '_bn'
  conv_name = name + '_conv'
 else:
  bn_name = None
  conv_name = None
 
 x = Conv2D(nb_filter, kernel_size, padding=padding, strides=strides, activation='relu', name=conv_name)(x)
 x = BatchNormalization(axis=3, name=bn_name)(x)
 return x
 
def bottleneck_Block(inpt, nb_filters, strides=(1, 1), with_conv_shortcut=False):
 k1, k2, k3 = nb_filters
 x = Conv2d_BN(inpt, nb_filter=k1, kernel_size=1, strides=strides, padding='same')
 x = Conv2d_BN(x, nb_filter=k2, kernel_size=3, padding='same')
 x = Conv2d_BN(x, nb_filter=k3, kernel_size=1, padding='same')
 if with_conv_shortcut:
  shortcut = Conv2d_BN(inpt, nb_filter=k3, strides=strides, kernel_size=1)
  x = add([x, shortcut])
  return x
 else:
  x = add([x, inpt])
  return x
 
def resnet_50():
 width = im_width
 height = im_height
 channel = 3
 inpt = Input(shape=(width, height, channel))
 x = ZeroPadding2D((3, 3))(inpt)
 x = Conv2d_BN(x, nb_filter=64, kernel_size=(7, 7), strides=(2, 2), padding='valid')
 x = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='same')(x)
 
 # conv2_x
 x = bottleneck_Block(x, nb_filters=[64, 64, 256], strides=(1, 1), with_conv_shortcut=True)
 x = bottleneck_Block(x, nb_filters=[64, 64, 256])
 x = bottleneck_Block(x, nb_filters=[64, 64, 256])
 
 # conv3_x
 x = bottleneck_Block(x, nb_filters=[128, 128, 512], strides=(2, 2), with_conv_shortcut=True)
 x = bottleneck_Block(x, nb_filters=[128, 128, 512])
 x = bottleneck_Block(x, nb_filters=[128, 128, 512])
 x = bottleneck_Block(x, nb_filters=[128, 128, 512])
 
 # conv4_x
 x = bottleneck_Block(x, nb_filters=[256, 256, 1024], strides=(2, 2), with_conv_shortcut=True)
 x = bottleneck_Block(x, nb_filters=[256, 256, 1024])
 x = bottleneck_Block(x, nb_filters=[256, 256, 1024])
 x = bottleneck_Block(x, nb_filters=[256, 256, 1024])
 x = bottleneck_Block(x, nb_filters=[256, 256, 1024])
 x = bottleneck_Block(x, nb_filters=[256, 256, 1024])
 
 # conv5_x
 x = bottleneck_Block(x, nb_filters=[512, 512, 2048], strides=(2, 2), with_conv_shortcut=True)
 x = bottleneck_Block(x, nb_filters=[512, 512, 2048])
 x = bottleneck_Block(x, nb_filters=[512, 512, 2048])
 
 x = AveragePooling2D(pool_size=(7, 7))(x)
 x = Flatten()(x)
 x = Dense(128, activation='relu')(x)
 return Model(inpt, x)
 
def generator(imgs, batch_size):
 """
 自定义迭代器
 :param imgs: 列表,每个包含一对矩阵以及label
 :param batch_size:
 :return:
 """
 while 1:
  random.shuffle(imgs)
  li = imgs[:batch_size]
  pairs = []
  labels = []
  for i in li:
   img1 = i[0]
   img2 = i[1]
   im1 = cv2.imread(img1)
   im2 = cv2.imread(img2)
   if im1 is None or im2 is None:
    continue
   label = int(i[2])
   img1 = processImg(img1)
   img2 = processImg(img2)
   pairs.append([img1, img2])
   labels.append(label)
  pairs = np.array(pairs)
  labels = np.array(labels)
  yield [pairs[:, 0], pairs[:, 1]], labels
 
input_shape = (im_width, im_height, 3)
base_network = resnet_50()
 
input_a = Input(shape=input_shape)
input_b = Input(shape=input_shape)
 
# because we re-use the same instance `base_network`,
# the weights of the network
# will be shared across the two branches
processed_a = base_network(input_a)
processed_b = base_network(input_b)
 
distance = Lambda(euclidean_distance,
     output_shape=eucl_dist_output_shape)([processed_a, processed_b])
with tf.device("/gpu:0"):
 model = Model([input_a, input_b], distance)
 # train
 rms = RMSprop()
 rows = csv.reader(open(csv_path, 'r'), delimiter=',')
 imgs = list(rows)
 checkpoint = ModelCheckpoint(filepath=model_result+'flag_{epoch:03d}.h5', verbose=1)
 model.compile(loss=contrastive_loss, optimizer=rms, metrics=[accuracy])
 model.fit_generator(generator(imgs, batch_size), epochs=epochs, steps_per_epoch=iterations, callbacks=[checkpoint])

用了回调函数保存了每一个epoch后的模型,也可以保存最好的,之后需要对模型进行测试。

测试时直接用load_model会报错,而应该变成如下形式调用:

model = load_model(model_path,custom_objects={'contrastive_loss': contrastive_loss }) #选取自己的.h模型名称

emmm,到这里,就成功训练测试完了~~~写的比较粗,因为这个代码在官方给的mnist上的改动不大,只是方便大家用自己的数据集,大家如果有更好的方法可以提出意见~~~希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python map和reduce函数用法示例
Feb 26 Python
Python贪吃蛇游戏编写代码
Oct 26 Python
关于Python如何避免循环导入问题详解
Sep 14 Python
Python中的探索性数据分析(功能式)
Dec 22 Python
python实现比较类的两个instance(对象)是否相等的方法分析
Jun 26 Python
使用python将最新的测试报告以附件的形式发到指定邮箱
Sep 20 Python
Python enumerate函数遍历数据对象组合过程解析
Dec 11 Python
Python垃圾回收机制三种实现方法
Apr 27 Python
python和go语言的区别是什么
Jul 20 Python
python按照list中字典的某key去重的示例代码
Oct 13 Python
python中strip(),lstrip(),rstrip()函数的使用讲解
Nov 17 Python
Python中异常处理用法
Nov 27 Python
python实现mean-shift聚类算法
Jun 10 #Python
Keras之自定义损失(loss)函数用法说明
Jun 10 #Python
Python xlwt模块使用代码实例
Jun 10 #Python
python中def是做什么的
Jun 10 #Python
keras实现调用自己训练的模型,并去掉全连接层
Jun 09 #Python
Python基于os.environ从windows获取环境变量
Jun 09 #Python
新手学习Python2和Python3中print不同的用法
Jun 09 #Python
You might like
当海贼王变成JOJO风
2020/03/02 日漫
Php+SqlServer实现分页显示
2006/10/09 PHP
php生成随机数或者字符串的代码
2008/09/05 PHP
php 变量定义方法
2009/06/14 PHP
codeigniter数据库操作函数汇总
2014/06/12 PHP
PHP实现浏览器中直接输出图片的方法示例
2018/03/14 PHP
jQuery 改变CSS样式基础代码
2010/02/11 Javascript
jQuery学习笔记 操作jQuery对象 文档处理
2012/09/19 Javascript
javascript事件函数中获得事件源的两种不错方法
2014/03/17 Javascript
jQuery 1.9使用$.support替代$.browser的使用方法
2014/05/27 Javascript
原生js实现日期联动
2015/01/12 Javascript
JavaScript日期时间与时间戳的转换函数分享
2015/01/31 Javascript
js简单实现竖向tab选项卡的方法
2015/05/04 Javascript
javascript十六进制及二进制转化的方法
2015/05/06 Javascript
基于cookie实现zTree树刷新后展开状态不变
2017/02/28 Javascript
vue.js 使用axios实现下载功能的示例
2018/03/05 Javascript
详解vue-cli3多环境打包配置
2019/03/28 Javascript
11个教程中不常被提及的JavaScript小技巧(推荐)
2019/04/17 Javascript
layer插件实现在弹出层中弹出一警告提示并关闭弹出层的方法
2019/09/24 Javascript
vue 实现tab切换保持数据状态
2020/07/21 Javascript
[31:01]2014 DOTA2国际邀请赛中国区预选赛5.21 CNB VS Orenda
2014/05/23 DOTA
使用python绘制人人网好友关系图示例
2014/04/01 Python
python标准算法实现数组全排列的方法
2015/03/17 Python
如何使用python爬取csdn博客访问量
2016/02/14 Python
python去除扩展名的实例讲解
2018/04/23 Python
利用Python如何生成便签图片详解
2018/07/09 Python
python3下pygame如何实现显示中文
2020/01/11 Python
Django多数据库配置及逆向生成model教程
2020/03/28 Python
python 6种方法实现单例模式
2020/12/15 Python
Footshop罗马尼亚:最好的运动鞋选择
2019/09/10 全球购物
外国语学院毕业生自荐信
2013/10/28 职场文书
决心书范文
2014/03/11 职场文书
师德师风个人整改措施
2014/10/27 职场文书
2016寒假假期总结
2015/10/10 职场文书
SQLServer2019 数据库环境搭建与使用的实现
2021/04/08 SQL Server
Python多个MP4合成视频的实现方法
2021/07/16 Python