keras-siamese用自己的数据集实现详解


Posted in Python onJune 10, 2020

Siamese网络不做过多介绍,思想并不难,输入两个图像,输出这两张图像的相似度,两个输入的网络结构是相同的,参数共享。

主要发现很多代码都是基于mnist数据集的,下面说一下怎么用自己的数据集实现siamese网络。

首先,先整理数据集,相同的类放到同一个文件夹下,如下图所示:

keras-siamese用自己的数据集实现详解

接下来,将pairs及对应的label写到csv中,代码如下:

import os
import random
import csv
#图片所在的路径
path = '/Users/mac/Desktop/wxd/flag/category/'
#files列表保存所有类别的路径
files=[]
same_pairs=[]
different_pairs=[]
for file in os.listdir(path):
 if file[0]=='.':
  continue
 file_path = os.path.join(path,file)
 files.append(file_path)
#该地址为csv要保存到的路径,a表示追加写入
with open('/Users/mac/Desktop/wxd/flag/data.csv','a') as f:
 #保存相同对
 writer = csv.writer(f)
 for file in files:
  imgs = os.listdir(file) 
  for i in range(0,len(imgs)-1):
   for j in range(i+1,len(imgs)):
    pairs = []
    name = file.split(sep='/')[-1]
    pairs.append(path+name+'/'+imgs[i])
    pairs.append(path+name+'/'+imgs[j])
    pairs.append(1)
    writer.writerow(pairs)
 #保存不同对
 for i in range(0,len(files)-1):
  for j in range(i+1,len(files)):
   filea = files[i]
   fileb = files[j]
   imga_li = os.listdir(filea)
   imgb_li = os.listdir(fileb)
   random.shuffle(imga_li)
   random.shuffle(imgb_li)
   a_li = imga_li[:]
   b_li = imgb_li[:]
   for p in range(len(a_li)):
    for q in range(len(b_li)):
     pairs = []
     name1 = filea.split(sep='/')[-1]
     name2 = fileb.split(sep='/')[-1]
     pairs.append(path+name1+'/'+a_li[p])
     pairs.append(path+name2+'/'+b_li[q])
     pairs.append(0)
     writer.writerow(pairs)

相当于csv每一行都包含一对结果,每一行有三列,第一列第一张图片路径,第二列第二张图片路径,第三列是不是相同的label,属于同一个类的label为1,不同类的为0,可参考下图:

keras-siamese用自己的数据集实现详解

然后,由于keras的fit函数需要将训练数据都塞入内存,而大部分训练数据都较大,因此才用fit_generator生成器的方法,便可以训练大数据,代码如下:

from __future__ import absolute_import
from __future__ import print_function
import numpy as np
from keras.models import Model
from keras.layers import Input, Dense, Dropout, BatchNormalization, Conv2D, MaxPooling2D, AveragePooling2D, concatenate, \
 Activation, ZeroPadding2D
from keras.layers import add, Flatten
from keras.utils import plot_model
from keras.metrics import top_k_categorical_accuracy
from keras.preprocessing.image import ImageDataGenerator
from keras.models import load_model
import tensorflow as tf
import random
import os
import cv2
import csv
import numpy as np
from keras.models import Model
from keras.layers import Input, Flatten, Dense, Dropout, Lambda
from keras.optimizers import RMSprop
from keras import backend as K
from keras.callbacks import ModelCheckpoint
from keras.preprocessing.image import img_to_array
 
"""
自定义的参数
"""
im_width = 224
im_height = 224
epochs = 100
batch_size = 64
iterations = 1000
csv_path = ''
model_result = ''
 
 
# 计算欧式距离
def euclidean_distance(vects):
 x, y = vects
 sum_square = K.sum(K.square(x - y), axis=1, keepdims=True)
 return K.sqrt(K.maximum(sum_square, K.epsilon()))
 
def eucl_dist_output_shape(shapes):
 shape1, shape2 = shapes
 return (shape1[0], 1)
 
# 计算loss
def contrastive_loss(y_true, y_pred):
 '''Contrastive loss from Hadsell-et-al.'06
 http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
 '''
 margin = 1
 square_pred = K.square(y_pred)
 margin_square = K.square(K.maximum(margin - y_pred, 0))
 return K.mean(y_true * square_pred + (1 - y_true) * margin_square)
 
def compute_accuracy(y_true, y_pred):
 '''计算准确率
 '''
 pred = y_pred.ravel() < 0.5
 print('pred:', pred)
 return np.mean(pred == y_true)
 
def accuracy(y_true, y_pred):
 '''Compute classification accuracy with a fixed threshold on distances.
 '''
 return K.mean(K.equal(y_true, K.cast(y_pred < 0.5, y_true.dtype)))
 
def processImg(filename):
 """
 :param filename: 图像的路径
 :return: 返回的是归一化矩阵
 """
 img = cv2.imread(filename)
 img = cv2.resize(img, (im_width, im_height))
 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
 img = img_to_array(img)
 img /= 255
 return img
 
def Conv2d_BN(x, nb_filter, kernel_size, strides=(1, 1), padding='same', name=None):
 if name is not None:
  bn_name = name + '_bn'
  conv_name = name + '_conv'
 else:
  bn_name = None
  conv_name = None
 
 x = Conv2D(nb_filter, kernel_size, padding=padding, strides=strides, activation='relu', name=conv_name)(x)
 x = BatchNormalization(axis=3, name=bn_name)(x)
 return x
 
def bottleneck_Block(inpt, nb_filters, strides=(1, 1), with_conv_shortcut=False):
 k1, k2, k3 = nb_filters
 x = Conv2d_BN(inpt, nb_filter=k1, kernel_size=1, strides=strides, padding='same')
 x = Conv2d_BN(x, nb_filter=k2, kernel_size=3, padding='same')
 x = Conv2d_BN(x, nb_filter=k3, kernel_size=1, padding='same')
 if with_conv_shortcut:
  shortcut = Conv2d_BN(inpt, nb_filter=k3, strides=strides, kernel_size=1)
  x = add([x, shortcut])
  return x
 else:
  x = add([x, inpt])
  return x
 
def resnet_50():
 width = im_width
 height = im_height
 channel = 3
 inpt = Input(shape=(width, height, channel))
 x = ZeroPadding2D((3, 3))(inpt)
 x = Conv2d_BN(x, nb_filter=64, kernel_size=(7, 7), strides=(2, 2), padding='valid')
 x = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='same')(x)
 
 # conv2_x
 x = bottleneck_Block(x, nb_filters=[64, 64, 256], strides=(1, 1), with_conv_shortcut=True)
 x = bottleneck_Block(x, nb_filters=[64, 64, 256])
 x = bottleneck_Block(x, nb_filters=[64, 64, 256])
 
 # conv3_x
 x = bottleneck_Block(x, nb_filters=[128, 128, 512], strides=(2, 2), with_conv_shortcut=True)
 x = bottleneck_Block(x, nb_filters=[128, 128, 512])
 x = bottleneck_Block(x, nb_filters=[128, 128, 512])
 x = bottleneck_Block(x, nb_filters=[128, 128, 512])
 
 # conv4_x
 x = bottleneck_Block(x, nb_filters=[256, 256, 1024], strides=(2, 2), with_conv_shortcut=True)
 x = bottleneck_Block(x, nb_filters=[256, 256, 1024])
 x = bottleneck_Block(x, nb_filters=[256, 256, 1024])
 x = bottleneck_Block(x, nb_filters=[256, 256, 1024])
 x = bottleneck_Block(x, nb_filters=[256, 256, 1024])
 x = bottleneck_Block(x, nb_filters=[256, 256, 1024])
 
 # conv5_x
 x = bottleneck_Block(x, nb_filters=[512, 512, 2048], strides=(2, 2), with_conv_shortcut=True)
 x = bottleneck_Block(x, nb_filters=[512, 512, 2048])
 x = bottleneck_Block(x, nb_filters=[512, 512, 2048])
 
 x = AveragePooling2D(pool_size=(7, 7))(x)
 x = Flatten()(x)
 x = Dense(128, activation='relu')(x)
 return Model(inpt, x)
 
def generator(imgs, batch_size):
 """
 自定义迭代器
 :param imgs: 列表,每个包含一对矩阵以及label
 :param batch_size:
 :return:
 """
 while 1:
  random.shuffle(imgs)
  li = imgs[:batch_size]
  pairs = []
  labels = []
  for i in li:
   img1 = i[0]
   img2 = i[1]
   im1 = cv2.imread(img1)
   im2 = cv2.imread(img2)
   if im1 is None or im2 is None:
    continue
   label = int(i[2])
   img1 = processImg(img1)
   img2 = processImg(img2)
   pairs.append([img1, img2])
   labels.append(label)
  pairs = np.array(pairs)
  labels = np.array(labels)
  yield [pairs[:, 0], pairs[:, 1]], labels
 
input_shape = (im_width, im_height, 3)
base_network = resnet_50()
 
input_a = Input(shape=input_shape)
input_b = Input(shape=input_shape)
 
# because we re-use the same instance `base_network`,
# the weights of the network
# will be shared across the two branches
processed_a = base_network(input_a)
processed_b = base_network(input_b)
 
distance = Lambda(euclidean_distance,
     output_shape=eucl_dist_output_shape)([processed_a, processed_b])
with tf.device("/gpu:0"):
 model = Model([input_a, input_b], distance)
 # train
 rms = RMSprop()
 rows = csv.reader(open(csv_path, 'r'), delimiter=',')
 imgs = list(rows)
 checkpoint = ModelCheckpoint(filepath=model_result+'flag_{epoch:03d}.h5', verbose=1)
 model.compile(loss=contrastive_loss, optimizer=rms, metrics=[accuracy])
 model.fit_generator(generator(imgs, batch_size), epochs=epochs, steps_per_epoch=iterations, callbacks=[checkpoint])

用了回调函数保存了每一个epoch后的模型,也可以保存最好的,之后需要对模型进行测试。

测试时直接用load_model会报错,而应该变成如下形式调用:

model = load_model(model_path,custom_objects={'contrastive_loss': contrastive_loss }) #选取自己的.h模型名称

emmm,到这里,就成功训练测试完了~~~写的比较粗,因为这个代码在官方给的mnist上的改动不大,只是方便大家用自己的数据集,大家如果有更好的方法可以提出意见~~~希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python解析html开发库pyquery使用方法
Feb 07 Python
python中while循环语句用法简单实例
May 07 Python
python先序遍历二叉树问题
Nov 10 Python
基于DataFrame筛选数据与loc的用法详解
May 18 Python
Python实现去除列表中重复元素的方法总结【7种方法】
Feb 16 Python
Python3中函数参数传递方式实例详解
May 05 Python
python Django里CSRF 对应策略详解
Aug 05 Python
python实现人机猜拳小游戏
Feb 03 Python
python实现图像拼接功能
Mar 23 Python
详解Flask前后端分离项目案例
Jul 24 Python
详解python中的闭包
Sep 07 Python
python3爬虫中多线程的优势总结
Nov 24 Python
python实现mean-shift聚类算法
Jun 10 #Python
Keras之自定义损失(loss)函数用法说明
Jun 10 #Python
Python xlwt模块使用代码实例
Jun 10 #Python
python中def是做什么的
Jun 10 #Python
keras实现调用自己训练的模型,并去掉全连接层
Jun 09 #Python
Python基于os.environ从windows获取环境变量
Jun 09 #Python
新手学习Python2和Python3中print不同的用法
Jun 09 #Python
You might like
PHP中读写文件实现代码
2011/10/20 PHP
php连接mysql之mysql_connect()与mysqli_connect()的区别
2020/07/19 PHP
有关DOM元素与事件的3个谜题
2010/11/11 Javascript
调试Node.JS的辅助工具(NodeWatcher)
2012/01/04 Javascript
JavaScript/jQuery 表单美化插件小结
2012/02/14 Javascript
jQuery插件实现表格隔行换色且感应鼠标高亮行变色
2013/09/22 Javascript
JS记录用户登录次数实现代码
2014/01/15 Javascript
jQuery 设置 CSS 属性示例介绍
2014/01/16 Javascript
ES6的新特性概览
2016/03/10 Javascript
使用JavaScript实现链表的数据结构的代码
2017/08/02 Javascript
JQuery实现table中tr上移下移的示例(超简单)
2018/01/08 jQuery
angular实现页面打印局部功能的思考与方法
2018/04/13 Javascript
Vue CLI3.0中使用jQuery和Bootstrap的方法
2019/02/28 jQuery
npm qs模块使用详解
2020/02/07 Javascript
python实现通过shelve修改对象实例
2014/09/26 Python
Python中datetime模块参考手册
2017/01/13 Python
Python Logging 日志记录入门学习
2018/06/02 Python
Python的iOS自动化打包实例代码
2018/11/22 Python
python3+selenium实现126邮箱登陆并发送邮件功能
2019/01/23 Python
基于python调用psutil模块过程解析
2019/12/20 Python
使用Python打造一款间谍程序的流程分析
2020/02/21 Python
Python常用扩展插件使用教程解析
2020/11/02 Python
Django websocket原理及功能实现代码
2020/11/14 Python
在pycharm创建scrapy项目的实现步骤
2020/12/01 Python
css3 给背景设置渐变色的方法
2019/09/12 HTML / CSS
李维斯牛仔裤荷兰官方网站:Levi’s NL
2020/08/23 全球购物
日语专业毕业生求职信
2013/12/04 职场文书
劳资协议书范本
2014/04/23 职场文书
党员应该树立反腐倡廉的坚定意识思想汇报
2014/09/12 职场文书
会计师事务所实习证明
2014/11/16 职场文书
优秀教师工作总结2015
2015/07/22 职场文书
证婚人致辞精选
2015/07/28 职场文书
《圆的周长》教学反思
2016/02/17 职场文书
实习报告范文
2019/07/30 职场文书
python 对图片进行简单的处理
2021/06/23 Python
MySQL中varchar和char类型的区别
2021/11/17 MySQL