keras-siamese用自己的数据集实现详解


Posted in Python onJune 10, 2020

Siamese网络不做过多介绍,思想并不难,输入两个图像,输出这两张图像的相似度,两个输入的网络结构是相同的,参数共享。

主要发现很多代码都是基于mnist数据集的,下面说一下怎么用自己的数据集实现siamese网络。

首先,先整理数据集,相同的类放到同一个文件夹下,如下图所示:

keras-siamese用自己的数据集实现详解

接下来,将pairs及对应的label写到csv中,代码如下:

import os
import random
import csv
#图片所在的路径
path = '/Users/mac/Desktop/wxd/flag/category/'
#files列表保存所有类别的路径
files=[]
same_pairs=[]
different_pairs=[]
for file in os.listdir(path):
 if file[0]=='.':
  continue
 file_path = os.path.join(path,file)
 files.append(file_path)
#该地址为csv要保存到的路径,a表示追加写入
with open('/Users/mac/Desktop/wxd/flag/data.csv','a') as f:
 #保存相同对
 writer = csv.writer(f)
 for file in files:
  imgs = os.listdir(file) 
  for i in range(0,len(imgs)-1):
   for j in range(i+1,len(imgs)):
    pairs = []
    name = file.split(sep='/')[-1]
    pairs.append(path+name+'/'+imgs[i])
    pairs.append(path+name+'/'+imgs[j])
    pairs.append(1)
    writer.writerow(pairs)
 #保存不同对
 for i in range(0,len(files)-1):
  for j in range(i+1,len(files)):
   filea = files[i]
   fileb = files[j]
   imga_li = os.listdir(filea)
   imgb_li = os.listdir(fileb)
   random.shuffle(imga_li)
   random.shuffle(imgb_li)
   a_li = imga_li[:]
   b_li = imgb_li[:]
   for p in range(len(a_li)):
    for q in range(len(b_li)):
     pairs = []
     name1 = filea.split(sep='/')[-1]
     name2 = fileb.split(sep='/')[-1]
     pairs.append(path+name1+'/'+a_li[p])
     pairs.append(path+name2+'/'+b_li[q])
     pairs.append(0)
     writer.writerow(pairs)

相当于csv每一行都包含一对结果,每一行有三列,第一列第一张图片路径,第二列第二张图片路径,第三列是不是相同的label,属于同一个类的label为1,不同类的为0,可参考下图:

keras-siamese用自己的数据集实现详解

然后,由于keras的fit函数需要将训练数据都塞入内存,而大部分训练数据都较大,因此才用fit_generator生成器的方法,便可以训练大数据,代码如下:

from __future__ import absolute_import
from __future__ import print_function
import numpy as np
from keras.models import Model
from keras.layers import Input, Dense, Dropout, BatchNormalization, Conv2D, MaxPooling2D, AveragePooling2D, concatenate, \
 Activation, ZeroPadding2D
from keras.layers import add, Flatten
from keras.utils import plot_model
from keras.metrics import top_k_categorical_accuracy
from keras.preprocessing.image import ImageDataGenerator
from keras.models import load_model
import tensorflow as tf
import random
import os
import cv2
import csv
import numpy as np
from keras.models import Model
from keras.layers import Input, Flatten, Dense, Dropout, Lambda
from keras.optimizers import RMSprop
from keras import backend as K
from keras.callbacks import ModelCheckpoint
from keras.preprocessing.image import img_to_array
 
"""
自定义的参数
"""
im_width = 224
im_height = 224
epochs = 100
batch_size = 64
iterations = 1000
csv_path = ''
model_result = ''
 
 
# 计算欧式距离
def euclidean_distance(vects):
 x, y = vects
 sum_square = K.sum(K.square(x - y), axis=1, keepdims=True)
 return K.sqrt(K.maximum(sum_square, K.epsilon()))
 
def eucl_dist_output_shape(shapes):
 shape1, shape2 = shapes
 return (shape1[0], 1)
 
# 计算loss
def contrastive_loss(y_true, y_pred):
 '''Contrastive loss from Hadsell-et-al.'06
 http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
 '''
 margin = 1
 square_pred = K.square(y_pred)
 margin_square = K.square(K.maximum(margin - y_pred, 0))
 return K.mean(y_true * square_pred + (1 - y_true) * margin_square)
 
def compute_accuracy(y_true, y_pred):
 '''计算准确率
 '''
 pred = y_pred.ravel() < 0.5
 print('pred:', pred)
 return np.mean(pred == y_true)
 
def accuracy(y_true, y_pred):
 '''Compute classification accuracy with a fixed threshold on distances.
 '''
 return K.mean(K.equal(y_true, K.cast(y_pred < 0.5, y_true.dtype)))
 
def processImg(filename):
 """
 :param filename: 图像的路径
 :return: 返回的是归一化矩阵
 """
 img = cv2.imread(filename)
 img = cv2.resize(img, (im_width, im_height))
 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
 img = img_to_array(img)
 img /= 255
 return img
 
def Conv2d_BN(x, nb_filter, kernel_size, strides=(1, 1), padding='same', name=None):
 if name is not None:
  bn_name = name + '_bn'
  conv_name = name + '_conv'
 else:
  bn_name = None
  conv_name = None
 
 x = Conv2D(nb_filter, kernel_size, padding=padding, strides=strides, activation='relu', name=conv_name)(x)
 x = BatchNormalization(axis=3, name=bn_name)(x)
 return x
 
def bottleneck_Block(inpt, nb_filters, strides=(1, 1), with_conv_shortcut=False):
 k1, k2, k3 = nb_filters
 x = Conv2d_BN(inpt, nb_filter=k1, kernel_size=1, strides=strides, padding='same')
 x = Conv2d_BN(x, nb_filter=k2, kernel_size=3, padding='same')
 x = Conv2d_BN(x, nb_filter=k3, kernel_size=1, padding='same')
 if with_conv_shortcut:
  shortcut = Conv2d_BN(inpt, nb_filter=k3, strides=strides, kernel_size=1)
  x = add([x, shortcut])
  return x
 else:
  x = add([x, inpt])
  return x
 
def resnet_50():
 width = im_width
 height = im_height
 channel = 3
 inpt = Input(shape=(width, height, channel))
 x = ZeroPadding2D((3, 3))(inpt)
 x = Conv2d_BN(x, nb_filter=64, kernel_size=(7, 7), strides=(2, 2), padding='valid')
 x = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='same')(x)
 
 # conv2_x
 x = bottleneck_Block(x, nb_filters=[64, 64, 256], strides=(1, 1), with_conv_shortcut=True)
 x = bottleneck_Block(x, nb_filters=[64, 64, 256])
 x = bottleneck_Block(x, nb_filters=[64, 64, 256])
 
 # conv3_x
 x = bottleneck_Block(x, nb_filters=[128, 128, 512], strides=(2, 2), with_conv_shortcut=True)
 x = bottleneck_Block(x, nb_filters=[128, 128, 512])
 x = bottleneck_Block(x, nb_filters=[128, 128, 512])
 x = bottleneck_Block(x, nb_filters=[128, 128, 512])
 
 # conv4_x
 x = bottleneck_Block(x, nb_filters=[256, 256, 1024], strides=(2, 2), with_conv_shortcut=True)
 x = bottleneck_Block(x, nb_filters=[256, 256, 1024])
 x = bottleneck_Block(x, nb_filters=[256, 256, 1024])
 x = bottleneck_Block(x, nb_filters=[256, 256, 1024])
 x = bottleneck_Block(x, nb_filters=[256, 256, 1024])
 x = bottleneck_Block(x, nb_filters=[256, 256, 1024])
 
 # conv5_x
 x = bottleneck_Block(x, nb_filters=[512, 512, 2048], strides=(2, 2), with_conv_shortcut=True)
 x = bottleneck_Block(x, nb_filters=[512, 512, 2048])
 x = bottleneck_Block(x, nb_filters=[512, 512, 2048])
 
 x = AveragePooling2D(pool_size=(7, 7))(x)
 x = Flatten()(x)
 x = Dense(128, activation='relu')(x)
 return Model(inpt, x)
 
def generator(imgs, batch_size):
 """
 自定义迭代器
 :param imgs: 列表,每个包含一对矩阵以及label
 :param batch_size:
 :return:
 """
 while 1:
  random.shuffle(imgs)
  li = imgs[:batch_size]
  pairs = []
  labels = []
  for i in li:
   img1 = i[0]
   img2 = i[1]
   im1 = cv2.imread(img1)
   im2 = cv2.imread(img2)
   if im1 is None or im2 is None:
    continue
   label = int(i[2])
   img1 = processImg(img1)
   img2 = processImg(img2)
   pairs.append([img1, img2])
   labels.append(label)
  pairs = np.array(pairs)
  labels = np.array(labels)
  yield [pairs[:, 0], pairs[:, 1]], labels
 
input_shape = (im_width, im_height, 3)
base_network = resnet_50()
 
input_a = Input(shape=input_shape)
input_b = Input(shape=input_shape)
 
# because we re-use the same instance `base_network`,
# the weights of the network
# will be shared across the two branches
processed_a = base_network(input_a)
processed_b = base_network(input_b)
 
distance = Lambda(euclidean_distance,
     output_shape=eucl_dist_output_shape)([processed_a, processed_b])
with tf.device("/gpu:0"):
 model = Model([input_a, input_b], distance)
 # train
 rms = RMSprop()
 rows = csv.reader(open(csv_path, 'r'), delimiter=',')
 imgs = list(rows)
 checkpoint = ModelCheckpoint(filepath=model_result+'flag_{epoch:03d}.h5', verbose=1)
 model.compile(loss=contrastive_loss, optimizer=rms, metrics=[accuracy])
 model.fit_generator(generator(imgs, batch_size), epochs=epochs, steps_per_epoch=iterations, callbacks=[checkpoint])

用了回调函数保存了每一个epoch后的模型,也可以保存最好的,之后需要对模型进行测试。

测试时直接用load_model会报错,而应该变成如下形式调用:

model = load_model(model_path,custom_objects={'contrastive_loss': contrastive_loss }) #选取自己的.h模型名称

emmm,到这里,就成功训练测试完了~~~写的比较粗,因为这个代码在官方给的mnist上的改动不大,只是方便大家用自己的数据集,大家如果有更好的方法可以提出意见~~~希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python实现的RSS阅读器实例
Jul 25 Python
python的debug实用工具 pdb详解
Jul 12 Python
Python3 使用pillow库生成随机验证码
Aug 26 Python
基于Python实现ComicReaper漫画自动爬取脚本过程解析
Nov 11 Python
Python3实现mysql连接和数据框的形成(实例代码)
Jan 17 Python
TFRecord文件查看包含的所有Features代码
Feb 17 Python
Python安装OpenCV的示例代码
Mar 05 Python
Python request操作步骤及代码实例
Apr 13 Python
使用python无账号无限制获取企查查信息的实例代码
Apr 17 Python
Python脚本实现监听服务器的思路代码详解
May 28 Python
python基于scrapy爬取京东笔记本电脑数据并进行简单处理和分析
Apr 14 Python
解决Pytorch半精度浮点型网络训练的问题
May 24 Python
python实现mean-shift聚类算法
Jun 10 #Python
Keras之自定义损失(loss)函数用法说明
Jun 10 #Python
Python xlwt模块使用代码实例
Jun 10 #Python
python中def是做什么的
Jun 10 #Python
keras实现调用自己训练的模型,并去掉全连接层
Jun 09 #Python
Python基于os.environ从windows获取环境变量
Jun 09 #Python
新手学习Python2和Python3中print不同的用法
Jun 09 #Python
You might like
PHP原生函数一定好吗?
2014/12/08 PHP
Redis使用Eval多个键值自增的操作实例
2016/11/04 PHP
PHP实现文件上传功能实例代码
2017/05/18 PHP
PHP中关于php.ini参数优化详解
2020/02/28 PHP
Web层改进II-用xmlhttp 无声息提交复杂表单
2007/01/22 Javascript
JS字符串截取函数实例
2013/12/27 Javascript
基于jQuery实现的菜单切换效果
2015/10/16 Javascript
javascript运算符——逻辑运算符全面解析
2016/06/27 Javascript
JS实现图片剪裁并预览效果
2016/08/12 Javascript
原生JS实现跑马灯效果
2017/02/20 Javascript
jQuery实现一个简单的验证码功能
2017/06/26 jQuery
浅谈vuepress 踩坑记
2018/04/18 Javascript
微信小程序画布圆形进度条显示效果
2020/11/17 Javascript
JS常见构造模式实例对比分析
2018/08/27 Javascript
vue-router传参用法详解
2019/01/19 Javascript
Vue 权限控制的两种方法(路由验证)
2019/08/16 Javascript
layui button 按钮弹出提示窗口,确定才进行的方法
2019/09/06 Javascript
vue指令v-html使用过滤器filters功能实例
2019/10/25 Javascript
vscode 使用Prettier插件格式化配置使用代码详解
2020/08/10 Javascript
在Python的Django框架中调用方法和处理无效变量
2015/07/15 Python
pandas按若干个列的组合条件筛选数据的方法
2018/04/11 Python
python从list列表中选出一个数和其对应的坐标方法
2019/07/20 Python
解决Jupyter Notebook开始菜单栏Anaconda下消失的问题
2020/04/13 Python
django inspectdb 操作已有数据库数据的使用步骤
2021/02/07 Python
英国美术用品购物网站:Cass Art
2019/10/08 全球购物
心理健康教育心得体会
2013/12/29 职场文书
清洁工表扬信
2014/01/08 职场文书
企业消防安全制度
2014/02/02 职场文书
护理专业毕业生自我鉴定总结
2014/03/24 职场文书
生育关怀行动实施方案
2014/03/26 职场文书
公司贷款承诺书
2014/05/30 职场文书
部队反四风对照检查材料
2014/09/26 职场文书
喋血孤城观后感
2015/06/08 职场文书
男方家长婚礼答谢词
2015/09/29 职场文书
带你学习MySQL执行计划
2021/05/31 MySQL
Python保存并浏览用户的历史记录
2022/04/29 Python