keras实现调用自己训练的模型,并去掉全连接层


Posted in Python onJune 09, 2020

其实很简单

from keras.models import load_model

base_model = load_model('model_resenet.h5')#加载指定的模型
print(base_model.summary())#输出网络的结构图

这是我的网络模型的输出,其实就是它的结构图

__________________________________________________________________________________________________
Layer (type)          Output Shape     Param #   Connected to           
==================================================================================================
input_1 (InputLayer)      (None, 227, 227, 1) 0                      
__________________________________________________________________________________________________
conv2d_1 (Conv2D)        (None, 225, 225, 32) 320     input_1[0][0]          
__________________________________________________________________________________________________
batch_normalization_1 (BatchNor (None, 225, 225, 32) 128     conv2d_1[0][0]          
__________________________________________________________________________________________________
activation_1 (Activation)    (None, 225, 225, 32) 0      batch_normalization_1[0][0]   
__________________________________________________________________________________________________
conv2d_2 (Conv2D)        (None, 225, 225, 32) 9248    activation_1[0][0]        
__________________________________________________________________________________________________
batch_normalization_2 (BatchNor (None, 225, 225, 32) 128     conv2d_2[0][0]          
__________________________________________________________________________________________________
activation_2 (Activation)    (None, 225, 225, 32) 0      batch_normalization_2[0][0]   
__________________________________________________________________________________________________
conv2d_3 (Conv2D)        (None, 225, 225, 32) 9248    activation_2[0][0]        
__________________________________________________________________________________________________
batch_normalization_3 (BatchNor (None, 225, 225, 32) 128     conv2d_3[0][0]          
__________________________________________________________________________________________________
merge_1 (Merge)         (None, 225, 225, 32) 0      batch_normalization_3[0][0]   
                                 activation_1[0][0]        
__________________________________________________________________________________________________
activation_3 (Activation)    (None, 225, 225, 32) 0      merge_1[0][0]          
__________________________________________________________________________________________________
conv2d_4 (Conv2D)        (None, 225, 225, 32) 9248    activation_3[0][0]        
__________________________________________________________________________________________________
batch_normalization_4 (BatchNor (None, 225, 225, 32) 128     conv2d_4[0][0]          
__________________________________________________________________________________________________
activation_4 (Activation)    (None, 225, 225, 32) 0      batch_normalization_4[0][0]   
__________________________________________________________________________________________________
conv2d_5 (Conv2D)        (None, 225, 225, 32) 9248    activation_4[0][0]        
__________________________________________________________________________________________________
batch_normalization_5 (BatchNor (None, 225, 225, 32) 128     conv2d_5[0][0]          
__________________________________________________________________________________________________
merge_2 (Merge)         (None, 225, 225, 32) 0      batch_normalization_5[0][0]   
                                 activation_3[0][0]        
__________________________________________________________________________________________________
activation_5 (Activation)    (None, 225, 225, 32) 0      merge_2[0][0]          
__________________________________________________________________________________________________
max_pooling2d_1 (MaxPooling2D) (None, 112, 112, 32) 0      activation_5[0][0]        
__________________________________________________________________________________________________
conv2d_6 (Conv2D)        (None, 110, 110, 64) 18496    max_pooling2d_1[0][0]      
__________________________________________________________________________________________________
batch_normalization_6 (BatchNor (None, 110, 110, 64) 256     conv2d_6[0][0]          
__________________________________________________________________________________________________
activation_6 (Activation)    (None, 110, 110, 64) 0      batch_normalization_6[0][0]   
__________________________________________________________________________________________________
conv2d_7 (Conv2D)        (None, 110, 110, 64) 36928    activation_6[0][0]        
__________________________________________________________________________________________________
batch_normalization_7 (BatchNor (None, 110, 110, 64) 256     conv2d_7[0][0]          
__________________________________________________________________________________________________
activation_7 (Activation)    (None, 110, 110, 64) 0      batch_normalization_7[0][0]   
__________________________________________________________________________________________________
conv2d_8 (Conv2D)        (None, 110, 110, 64) 36928    activation_7[0][0]        
__________________________________________________________________________________________________
batch_normalization_8 (BatchNor (None, 110, 110, 64) 256     conv2d_8[0][0]          
__________________________________________________________________________________________________
merge_3 (Merge)         (None, 110, 110, 64) 0      batch_normalization_8[0][0]   
                                 activation_6[0][0]        
__________________________________________________________________________________________________
activation_8 (Activation)    (None, 110, 110, 64) 0      merge_3[0][0]          
__________________________________________________________________________________________________
conv2d_9 (Conv2D)        (None, 110, 110, 64) 36928    activation_8[0][0]        
__________________________________________________________________________________________________
batch_normalization_9 (BatchNor (None, 110, 110, 64) 256     conv2d_9[0][0]          
__________________________________________________________________________________________________
activation_9 (Activation)    (None, 110, 110, 64) 0      batch_normalization_9[0][0]   
__________________________________________________________________________________________________
conv2d_10 (Conv2D)       (None, 110, 110, 64) 36928    activation_9[0][0]        
__________________________________________________________________________________________________
batch_normalization_10 (BatchNo (None, 110, 110, 64) 256     conv2d_10[0][0]         
__________________________________________________________________________________________________
merge_4 (Merge)         (None, 110, 110, 64) 0      batch_normalization_10[0][0]   
                                 activation_8[0][0]        
__________________________________________________________________________________________________
activation_10 (Activation)   (None, 110, 110, 64) 0      merge_4[0][0]          
__________________________________________________________________________________________________
max_pooling2d_2 (MaxPooling2D) (None, 55, 55, 64)  0      activation_10[0][0]       
__________________________________________________________________________________________________
conv2d_11 (Conv2D)       (None, 53, 53, 64)  36928    max_pooling2d_2[0][0]      
__________________________________________________________________________________________________
batch_normalization_11 (BatchNo (None, 53, 53, 64)  256     conv2d_11[0][0]         
__________________________________________________________________________________________________
activation_11 (Activation)   (None, 53, 53, 64)  0      batch_normalization_11[0][0]   
__________________________________________________________________________________________________
max_pooling2d_3 (MaxPooling2D) (None, 26, 26, 64)  0      activation_11[0][0]       
__________________________________________________________________________________________________
conv2d_12 (Conv2D)       (None, 26, 26, 64)  36928    max_pooling2d_3[0][0]      
__________________________________________________________________________________________________
batch_normalization_12 (BatchNo (None, 26, 26, 64)  256     conv2d_12[0][0]         
__________________________________________________________________________________________________
activation_12 (Activation)   (None, 26, 26, 64)  0      batch_normalization_12[0][0]   
__________________________________________________________________________________________________
conv2d_13 (Conv2D)       (None, 26, 26, 64)  36928    activation_12[0][0]       
__________________________________________________________________________________________________
batch_normalization_13 (BatchNo (None, 26, 26, 64)  256     conv2d_13[0][0]         
__________________________________________________________________________________________________
merge_5 (Merge)         (None, 26, 26, 64)  0      batch_normalization_13[0][0]   
                                 max_pooling2d_3[0][0]      
__________________________________________________________________________________________________
activation_13 (Activation)   (None, 26, 26, 64)  0      merge_5[0][0]          
__________________________________________________________________________________________________
conv2d_14 (Conv2D)       (None, 26, 26, 64)  36928    activation_13[0][0]       
__________________________________________________________________________________________________
batch_normalization_14 (BatchNo (None, 26, 26, 64)  256     conv2d_14[0][0]         
__________________________________________________________________________________________________
activation_14 (Activation)   (None, 26, 26, 64)  0      batch_normalization_14[0][0]   
__________________________________________________________________________________________________
conv2d_15 (Conv2D)       (None, 26, 26, 64)  36928    activation_14[0][0]       
__________________________________________________________________________________________________
batch_normalization_15 (BatchNo (None, 26, 26, 64)  256     conv2d_15[0][0]         
__________________________________________________________________________________________________
merge_6 (Merge)         (None, 26, 26, 64)  0      batch_normalization_15[0][0]   
                                 activation_13[0][0]       
__________________________________________________________________________________________________
activation_15 (Activation)   (None, 26, 26, 64)  0      merge_6[0][0]          
__________________________________________________________________________________________________
max_pooling2d_4 (MaxPooling2D) (None, 13, 13, 64)  0      activation_15[0][0]       
__________________________________________________________________________________________________
conv2d_16 (Conv2D)       (None, 11, 11, 32)  18464    max_pooling2d_4[0][0]      
__________________________________________________________________________________________________
batch_normalization_16 (BatchNo (None, 11, 11, 32)  128     conv2d_16[0][0]         
__________________________________________________________________________________________________
activation_16 (Activation)   (None, 11, 11, 32)  0      batch_normalization_16[0][0]   
__________________________________________________________________________________________________
conv2d_17 (Conv2D)       (None, 11, 11, 32)  9248    activation_16[0][0]       
__________________________________________________________________________________________________
batch_normalization_17 (BatchNo (None, 11, 11, 32)  128     conv2d_17[0][0]         
__________________________________________________________________________________________________
activation_17 (Activation)   (None, 11, 11, 32)  0      batch_normalization_17[0][0]   
__________________________________________________________________________________________________
conv2d_18 (Conv2D)       (None, 11, 11, 32)  9248    activation_17[0][0]       
__________________________________________________________________________________________________
batch_normalization_18 (BatchNo (None, 11, 11, 32)  128     conv2d_18[0][0]         
__________________________________________________________________________________________________
merge_7 (Merge)         (None, 11, 11, 32)  0      batch_normalization_18[0][0]   
                                 activation_16[0][0]       
__________________________________________________________________________________________________
activation_18 (Activation)   (None, 11, 11, 32)  0      merge_7[0][0]          
__________________________________________________________________________________________________
conv2d_19 (Conv2D)       (None, 11, 11, 32)  9248    activation_18[0][0]       
__________________________________________________________________________________________________
batch_normalization_19 (BatchNo (None, 11, 11, 32)  128     conv2d_19[0][0]         
__________________________________________________________________________________________________
activation_19 (Activation)   (None, 11, 11, 32)  0      batch_normalization_19[0][0]   
__________________________________________________________________________________________________
conv2d_20 (Conv2D)       (None, 11, 11, 32)  9248    activation_19[0][0]       
__________________________________________________________________________________________________
batch_normalization_20 (BatchNo (None, 11, 11, 32)  128     conv2d_20[0][0]         
__________________________________________________________________________________________________
merge_8 (Merge)         (None, 11, 11, 32)  0      batch_normalization_20[0][0]   
                                 activation_18[0][0]       
__________________________________________________________________________________________________
activation_20 (Activation)   (None, 11, 11, 32)  0      merge_8[0][0]          
__________________________________________________________________________________________________
max_pooling2d_5 (MaxPooling2D) (None, 5, 5, 32)   0      activation_20[0][0]       
__________________________________________________________________________________________________
conv2d_21 (Conv2D)       (None, 3, 3, 64)   18496    max_pooling2d_5[0][0]      
__________________________________________________________________________________________________
batch_normalization_21 (BatchNo (None, 3, 3, 64)   256     conv2d_21[0][0]         
__________________________________________________________________________________________________
activation_21 (Activation)   (None, 3, 3, 64)   0      batch_normalization_21[0][0]   
__________________________________________________________________________________________________
conv2d_22 (Conv2D)       (None, 3, 3, 64)   36928    activation_21[0][0]       
__________________________________________________________________________________________________
batch_normalization_22 (BatchNo (None, 3, 3, 64)   256     conv2d_22[0][0]         
__________________________________________________________________________________________________
activation_22 (Activation)   (None, 3, 3, 64)   0      batch_normalization_22[0][0]   
__________________________________________________________________________________________________
conv2d_23 (Conv2D)       (None, 3, 3, 64)   36928    activation_22[0][0]       
__________________________________________________________________________________________________
batch_normalization_23 (BatchNo (None, 3, 3, 64)   256     conv2d_23[0][0]         
__________________________________________________________________________________________________
merge_9 (Merge)         (None, 3, 3, 64)   0      batch_normalization_23[0][0]   
                                 activation_21[0][0]       
__________________________________________________________________________________________________
activation_23 (Activation)   (None, 3, 3, 64)   0      merge_9[0][0]          
__________________________________________________________________________________________________
conv2d_24 (Conv2D)       (None, 3, 3, 64)   36928    activation_23[0][0]       
__________________________________________________________________________________________________
batch_normalization_24 (BatchNo (None, 3, 3, 64)   256     conv2d_24[0][0]         
__________________________________________________________________________________________________
activation_24 (Activation)   (None, 3, 3, 64)   0      batch_normalization_24[0][0]   
__________________________________________________________________________________________________
conv2d_25 (Conv2D)       (None, 3, 3, 64)   36928    activation_24[0][0]       
__________________________________________________________________________________________________
batch_normalization_25 (BatchNo (None, 3, 3, 64)   256     conv2d_25[0][0]         
__________________________________________________________________________________________________
merge_10 (Merge)        (None, 3, 3, 64)   0      batch_normalization_25[0][0]   
                                 activation_23[0][0]       
__________________________________________________________________________________________________
activation_25 (Activation)   (None, 3, 3, 64)   0      merge_10[0][0]          
__________________________________________________________________________________________________
max_pooling2d_6 (MaxPooling2D) (None, 1, 1, 64)   0      activation_25[0][0]       
__________________________________________________________________________________________________
flatten_1 (Flatten)       (None, 64)      0      max_pooling2d_6[0][0]      
__________________________________________________________________________________________________
dense_1 (Dense)         (None, 256)     16640    flatten_1[0][0]         
__________________________________________________________________________________________________
dropout_1 (Dropout)       (None, 256)     0      dense_1[0][0]          
__________________________________________________________________________________________________
dense_2 (Dense)         (None, 2)      514     dropout_1[0][0]         
==================================================================================================
Total params: 632,098
Trainable params: 629,538
Non-trainable params: 2,560
__________________________________________________________________________________________________

去掉模型的全连接层

from keras.models import load_model

base_model = load_model('model_resenet.h5')
resnet_model = Model(inputs=base_model.input, outputs=base_model.get_layer('max_pooling2d_6').output)
#'max_pooling2d_6'其实就是上述网络中全连接层的前面一层,当然这里你也可以选取其它层,把该层的名称代替'max_pooling2d_6'即可,这样其实就是截取网络,输出网络结构就是方便读取每层的名字。
print(resnet_model.summary())

新输出的网络结构:

__________________________________________________________________________________________________
Layer (type)          Output Shape     Param #   Connected to           
==================================================================================================
input_1 (InputLayer)      (None, 227, 227, 1) 0                      
__________________________________________________________________________________________________
conv2d_1 (Conv2D)        (None, 225, 225, 32) 320     input_1[0][0]          
__________________________________________________________________________________________________
batch_normalization_1 (BatchNor (None, 225, 225, 32) 128     conv2d_1[0][0]          
__________________________________________________________________________________________________
activation_1 (Activation)    (None, 225, 225, 32) 0      batch_normalization_1[0][0]   
__________________________________________________________________________________________________
conv2d_2 (Conv2D)        (None, 225, 225, 32) 9248    activation_1[0][0]        
__________________________________________________________________________________________________
batch_normalization_2 (BatchNor (None, 225, 225, 32) 128     conv2d_2[0][0]          
__________________________________________________________________________________________________
activation_2 (Activation)    (None, 225, 225, 32) 0      batch_normalization_2[0][0]   
__________________________________________________________________________________________________
conv2d_3 (Conv2D)        (None, 225, 225, 32) 9248    activation_2[0][0]        
__________________________________________________________________________________________________
batch_normalization_3 (BatchNor (None, 225, 225, 32) 128     conv2d_3[0][0]          
__________________________________________________________________________________________________
merge_1 (Merge)         (None, 225, 225, 32) 0      batch_normalization_3[0][0]   
                                 activation_1[0][0]        
__________________________________________________________________________________________________
activation_3 (Activation)    (None, 225, 225, 32) 0      merge_1[0][0]          
__________________________________________________________________________________________________
conv2d_4 (Conv2D)        (None, 225, 225, 32) 9248    activation_3[0][0]        
__________________________________________________________________________________________________
batch_normalization_4 (BatchNor (None, 225, 225, 32) 128     conv2d_4[0][0]          
__________________________________________________________________________________________________
activation_4 (Activation)    (None, 225, 225, 32) 0      batch_normalization_4[0][0]   
__________________________________________________________________________________________________
conv2d_5 (Conv2D)        (None, 225, 225, 32) 9248    activation_4[0][0]        
__________________________________________________________________________________________________
batch_normalization_5 (BatchNor (None, 225, 225, 32) 128     conv2d_5[0][0]          
__________________________________________________________________________________________________
merge_2 (Merge)         (None, 225, 225, 32) 0      batch_normalization_5[0][0]   
                                 activation_3[0][0]        
__________________________________________________________________________________________________
activation_5 (Activation)    (None, 225, 225, 32) 0      merge_2[0][0]          
__________________________________________________________________________________________________
max_pooling2d_1 (MaxPooling2D) (None, 112, 112, 32) 0      activation_5[0][0]        
__________________________________________________________________________________________________
conv2d_6 (Conv2D)        (None, 110, 110, 64) 18496    max_pooling2d_1[0][0]      
__________________________________________________________________________________________________
batch_normalization_6 (BatchNor (None, 110, 110, 64) 256     conv2d_6[0][0]          
__________________________________________________________________________________________________
activation_6 (Activation)    (None, 110, 110, 64) 0      batch_normalization_6[0][0]   
__________________________________________________________________________________________________
conv2d_7 (Conv2D)        (None, 110, 110, 64) 36928    activation_6[0][0]        
__________________________________________________________________________________________________
batch_normalization_7 (BatchNor (None, 110, 110, 64) 256     conv2d_7[0][0]          
__________________________________________________________________________________________________
activation_7 (Activation)    (None, 110, 110, 64) 0      batch_normalization_7[0][0]   
__________________________________________________________________________________________________
conv2d_8 (Conv2D)        (None, 110, 110, 64) 36928    activation_7[0][0]        
__________________________________________________________________________________________________
batch_normalization_8 (BatchNor (None, 110, 110, 64) 256     conv2d_8[0][0]          
__________________________________________________________________________________________________
merge_3 (Merge)         (None, 110, 110, 64) 0      batch_normalization_8[0][0]   
                                 activation_6[0][0]        
__________________________________________________________________________________________________
activation_8 (Activation)    (None, 110, 110, 64) 0      merge_3[0][0]          
__________________________________________________________________________________________________
conv2d_9 (Conv2D)        (None, 110, 110, 64) 36928    activation_8[0][0]        
__________________________________________________________________________________________________
batch_normalization_9 (BatchNor (None, 110, 110, 64) 256     conv2d_9[0][0]          
__________________________________________________________________________________________________
activation_9 (Activation)    (None, 110, 110, 64) 0      batch_normalization_9[0][0]   
__________________________________________________________________________________________________
conv2d_10 (Conv2D)       (None, 110, 110, 64) 36928    activation_9[0][0]        
__________________________________________________________________________________________________
batch_normalization_10 (BatchNo (None, 110, 110, 64) 256     conv2d_10[0][0]         
__________________________________________________________________________________________________
merge_4 (Merge)         (None, 110, 110, 64) 0      batch_normalization_10[0][0]   
                                 activation_8[0][0]        
__________________________________________________________________________________________________
activation_10 (Activation)   (None, 110, 110, 64) 0      merge_4[0][0]          
__________________________________________________________________________________________________
max_pooling2d_2 (MaxPooling2D) (None, 55, 55, 64)  0      activation_10[0][0]       
__________________________________________________________________________________________________
conv2d_11 (Conv2D)       (None, 53, 53, 64)  36928    max_pooling2d_2[0][0]      
__________________________________________________________________________________________________
batch_normalization_11 (BatchNo (None, 53, 53, 64)  256     conv2d_11[0][0]         
__________________________________________________________________________________________________
activation_11 (Activation)   (None, 53, 53, 64)  0      batch_normalization_11[0][0]   
__________________________________________________________________________________________________
max_pooling2d_3 (MaxPooling2D) (None, 26, 26, 64)  0      activation_11[0][0]       
__________________________________________________________________________________________________
conv2d_12 (Conv2D)       (None, 26, 26, 64)  36928    max_pooling2d_3[0][0]      
__________________________________________________________________________________________________
batch_normalization_12 (BatchNo (None, 26, 26, 64)  256     conv2d_12[0][0]         
__________________________________________________________________________________________________
activation_12 (Activation)   (None, 26, 26, 64)  0      batch_normalization_12[0][0]   
__________________________________________________________________________________________________
conv2d_13 (Conv2D)       (None, 26, 26, 64)  36928    activation_12[0][0]       
__________________________________________________________________________________________________
batch_normalization_13 (BatchNo (None, 26, 26, 64)  256     conv2d_13[0][0]         
__________________________________________________________________________________________________
merge_5 (Merge)         (None, 26, 26, 64)  0      batch_normalization_13[0][0]   
                                 max_pooling2d_3[0][0]      
__________________________________________________________________________________________________
activation_13 (Activation)   (None, 26, 26, 64)  0      merge_5[0][0]          
__________________________________________________________________________________________________
conv2d_14 (Conv2D)       (None, 26, 26, 64)  36928    activation_13[0][0]       
__________________________________________________________________________________________________
batch_normalization_14 (BatchNo (None, 26, 26, 64)  256     conv2d_14[0][0]         
__________________________________________________________________________________________________
activation_14 (Activation)   (None, 26, 26, 64)  0      batch_normalization_14[0][0]   
__________________________________________________________________________________________________
conv2d_15 (Conv2D)       (None, 26, 26, 64)  36928    activation_14[0][0]       
__________________________________________________________________________________________________
batch_normalization_15 (BatchNo (None, 26, 26, 64)  256     conv2d_15[0][0]         
__________________________________________________________________________________________________
merge_6 (Merge)         (None, 26, 26, 64)  0      batch_normalization_15[0][0]   
                                 activation_13[0][0]       
__________________________________________________________________________________________________
activation_15 (Activation)   (None, 26, 26, 64)  0      merge_6[0][0]          
__________________________________________________________________________________________________
max_pooling2d_4 (MaxPooling2D) (None, 13, 13, 64)  0      activation_15[0][0]       
__________________________________________________________________________________________________
conv2d_16 (Conv2D)       (None, 11, 11, 32)  18464    max_pooling2d_4[0][0]      
__________________________________________________________________________________________________
batch_normalization_16 (BatchNo (None, 11, 11, 32)  128     conv2d_16[0][0]         
__________________________________________________________________________________________________
activation_16 (Activation)   (None, 11, 11, 32)  0      batch_normalization_16[0][0]   
__________________________________________________________________________________________________
conv2d_17 (Conv2D)       (None, 11, 11, 32)  9248    activation_16[0][0]       
__________________________________________________________________________________________________
batch_normalization_17 (BatchNo (None, 11, 11, 32)  128     conv2d_17[0][0]         
__________________________________________________________________________________________________
activation_17 (Activation)   (None, 11, 11, 32)  0      batch_normalization_17[0][0]   
__________________________________________________________________________________________________
conv2d_18 (Conv2D)       (None, 11, 11, 32)  9248    activation_17[0][0]       
__________________________________________________________________________________________________
batch_normalization_18 (BatchNo (None, 11, 11, 32)  128     conv2d_18[0][0]         
__________________________________________________________________________________________________
merge_7 (Merge)         (None, 11, 11, 32)  0      batch_normalization_18[0][0]   
                                 activation_16[0][0]       
__________________________________________________________________________________________________
activation_18 (Activation)   (None, 11, 11, 32)  0      merge_7[0][0]          
__________________________________________________________________________________________________
conv2d_19 (Conv2D)       (None, 11, 11, 32)  9248    activation_18[0][0]       
__________________________________________________________________________________________________
batch_normalization_19 (BatchNo (None, 11, 11, 32)  128     conv2d_19[0][0]         
__________________________________________________________________________________________________
activation_19 (Activation)   (None, 11, 11, 32)  0      batch_normalization_19[0][0]   
__________________________________________________________________________________________________
conv2d_20 (Conv2D)       (None, 11, 11, 32)  9248    activation_19[0][0]       
__________________________________________________________________________________________________
batch_normalization_20 (BatchNo (None, 11, 11, 32)  128     conv2d_20[0][0]         
__________________________________________________________________________________________________
merge_8 (Merge)         (None, 11, 11, 32)  0      batch_normalization_20[0][0]   
                                 activation_18[0][0]       
__________________________________________________________________________________________________
activation_20 (Activation)   (None, 11, 11, 32)  0      merge_8[0][0]          
__________________________________________________________________________________________________
max_pooling2d_5 (MaxPooling2D) (None, 5, 5, 32)   0      activation_20[0][0]       
__________________________________________________________________________________________________
conv2d_21 (Conv2D)       (None, 3, 3, 64)   18496    max_pooling2d_5[0][0]      
__________________________________________________________________________________________________
batch_normalization_21 (BatchNo (None, 3, 3, 64)   256     conv2d_21[0][0]         
__________________________________________________________________________________________________
activation_21 (Activation)   (None, 3, 3, 64)   0      batch_normalization_21[0][0]   
__________________________________________________________________________________________________
conv2d_22 (Conv2D)       (None, 3, 3, 64)   36928    activation_21[0][0]       
__________________________________________________________________________________________________
batch_normalization_22 (BatchNo (None, 3, 3, 64)   256     conv2d_22[0][0]         
__________________________________________________________________________________________________
activation_22 (Activation)   (None, 3, 3, 64)   0      batch_normalization_22[0][0]   
__________________________________________________________________________________________________
conv2d_23 (Conv2D)       (None, 3, 3, 64)   36928    activation_22[0][0]       
__________________________________________________________________________________________________
batch_normalization_23 (BatchNo (None, 3, 3, 64)   256     conv2d_23[0][0]         
__________________________________________________________________________________________________
merge_9 (Merge)         (None, 3, 3, 64)   0      batch_normalization_23[0][0]   
                                 activation_21[0][0]       
__________________________________________________________________________________________________
activation_23 (Activation)   (None, 3, 3, 64)   0      merge_9[0][0]          
__________________________________________________________________________________________________
conv2d_24 (Conv2D)       (None, 3, 3, 64)   36928    activation_23[0][0]       
__________________________________________________________________________________________________
batch_normalization_24 (BatchNo (None, 3, 3, 64)   256     conv2d_24[0][0]         
__________________________________________________________________________________________________
activation_24 (Activation)   (None, 3, 3, 64)   0      batch_normalization_24[0][0]   
__________________________________________________________________________________________________
conv2d_25 (Conv2D)       (None, 3, 3, 64)   36928    activation_24[0][0]       
__________________________________________________________________________________________________
batch_normalization_25 (BatchNo (None, 3, 3, 64)   256     conv2d_25[0][0]         
__________________________________________________________________________________________________
merge_10 (Merge)        (None, 3, 3, 64)   0      batch_normalization_25[0][0]   
                                 activation_23[0][0]       
__________________________________________________________________________________________________
activation_25 (Activation)   (None, 3, 3, 64)   0      merge_10[0][0]          
__________________________________________________________________________________________________
max_pooling2d_6 (MaxPooling2D) (None, 1, 1, 64)   0      activation_25[0][0]       
==================================================================================================
Total params: 614,944
Trainable params: 612,384
Non-trainable params: 2,560
__________________________________________________________________________________________________

以上这篇keras实现调用自己训练的模型,并去掉全连接层就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python实现list反转实例汇总
Nov 11 Python
Python中zfill()方法的使用教程
May 20 Python
Python回调函数用法实例详解
Jul 02 Python
Python优先队列实现方法示例
Sep 21 Python
浅谈Pandas中map, applymap and apply的区别
Apr 10 Python
解决Python2.7中IDLE启动没有反应的问题
Nov 30 Python
使用python itchat包爬取微信好友头像形成矩形头像集的方法
Feb 21 Python
解决Tensorboard可视化错误:不显示数据 No scalar data was found
Feb 15 Python
浅谈sklearn中predict与predict_proba区别
Jun 28 Python
带你学习Python如何实现回归树模型
Jul 16 Python
Anaconda的安装与虚拟环境建立
Nov 18 Python
一篇文章带你了解Python和Java的正则表达式对比
Sep 15 Python
Python基于os.environ从windows获取环境变量
Jun 09 #Python
新手学习Python2和Python3中print不同的用法
Jun 09 #Python
Python基于wordcloud及jieba实现中国地图词云图
Jun 09 #Python
Python中的__init__作用是什么
Jun 09 #Python
python小白学习包管理器pip安装
Jun 09 #Python
Python小白垃圾回收机制入门
Jun 09 #Python
Python中如何添加自定义模块
Jun 09 #Python
You might like
150kHz到30Mhz完全冲浪手册
2020/03/20 无线电
Yii CDBCriteria常用方法实例小结
2017/01/19 PHP
对联广告js flash激活
2006/10/19 Javascript
用prototype实现的简单小巧的多级联动菜单
2007/03/24 Javascript
论坛里点击别人帖子下面的回复,回复标题变成“回复 24# 的帖子”
2009/06/14 Javascript
js计算页面刷新的次数
2009/07/20 Javascript
Javascript 键盘keyCode键码值表
2009/12/24 Javascript
Firefox+FireBug使JQuery的学习更加轻松愉快
2010/01/01 Javascript
jQuery插件开发的两种方法及$.fn.extend的详解
2014/01/16 Javascript
javascript如何判断输入的url是否正确
2014/04/11 Javascript
再探JavaScript作用域
2014/09/24 Javascript
node.js中的path.join方法使用说明
2014/12/08 Javascript
轻松创建nodejs服务器(10):处理POST请求
2014/12/18 NodeJs
基于jQuery实现仿百度首页选项卡切换效果
2016/05/29 Javascript
js return返回多个值,通过对象的属性访问方法
2017/02/21 Javascript
Vue实现动态创建和删除数据的方法
2018/03/17 Javascript
详解如何解决Vue和vue-template-compiler版本之间的问题
2018/09/17 Javascript
微信小程序点击item使之滚动到屏幕中间位置
2020/03/25 Javascript
使用python3.5仿微软记事本notepad
2016/06/15 Python
Python 'takes exactly 1 argument (2 given)' Python error
2016/12/13 Python
python实现unicode转中文及转换默认编码的方法
2017/04/29 Python
浅谈python jieba分词模块的基本用法
2017/11/09 Python
python opencv 图像尺寸变换方法
2018/04/02 Python
python中的文件打开与关闭操作命令介绍
2018/04/26 Python
Python实现判断一个整数是否为回文数算法示例
2019/03/02 Python
对python中的*args与**kwgs的含义与作用详解
2019/08/28 Python
PyTorch实现ResNet50、ResNet101和ResNet152示例
2020/01/14 Python
css3打造一款漂亮的卡哇伊按钮
2013/03/20 HTML / CSS
css3实现背景模糊的三种方式(小结)
2020/05/15 HTML / CSS
入党积极分子思想汇报
2014/01/02 职场文书
物流专业专科生职业生涯规划书
2014/09/14 职场文书
2015毕业生实习工作总结
2014/12/12 职场文书
2014年房地产个人工作总结
2014/12/20 职场文书
杭白菊导游词
2015/02/10 职场文书
社区服务活动感想
2015/08/11 职场文书
实战Python爬虫爬取酷我音乐
2022/04/11 Python