python Plotly绘图工具的简单使用


Posted in Python onMarch 03, 2020

1、plotly库的相关介绍

1)相关说明

  • plotly是一个基于javascript的绘图库,plotly绘图种类丰富,效果美观;
  • 易于保存与分享plotly的绘图结果,并且可以与Web无缝集成;
  • ploty默认的绘图结果,是一个HTML网页文件,通过浏览器可以直接查看;

python Plotly绘图工具的简单使用

2)plotly与matplotlib、seaborn的关系

  需要注意的是,ployly绘图库与matplotlib绘图库、seaborn绘图库并没有什么关系。也就是说说plotly是一个单独的绘图库,有自己独特的绘图语法、绘图参数和绘图原理,因此我们需要单独学习它。

2、导入相关库

  对于我们做数据分析的人员来说,一般用的都是离线绘图库。在线绘图库需要的话,可以自己百度研究。

import os
import numpy as np
import pandas as pd

import plotly as py
import plotly.graph_objs as go
import plotly.expression as px
from plotly import tools

import warnings
warnings.filterwarnings("ignore")

3、plotly绘图原理

1)ployly常用的两个绘图模块:graph_objs和expression

  graph_objs和expression是plotly里面两个很常用的绘图库,graph_objs相当于matplotlib,在数据组织上比较费劲,但是任然比起matplotlib绘图更简单、更好看。这里说的费劲是相对于expression库来说的。expression库相当于seaborn的地位,在数据组织上较为容易,绘图比起seaborn来说,也更加容易。这里你心里有个印象即可,知道这两个绘图库很牛,就行了。
  对于graph_objs绘图库,我们常命名为“go”(import plotly.graph_objs as go);对于expression绘图库,我们常命名为“px”(import plotly.expression as px)。

2)graph_objs(“go”)库的绘图原理

① 简单的案例说明

df = pd.read_excel("plot.xlsx")
# 步骤一
trace0 = go.Scatter(x=df["年份"],y=df["城镇居民"],name="城镇居民")
trace1 = go.Scatter(x=df["年份"],y=df["农村居民"],name="农村居民")
# 步骤二
data = [trace0,trace1]
# 步骤三
fig = go.Figure(data)
# 步骤四
fig.update_layout(
  title="城乡居民家庭人均收入",
  xaxis_title="年份",
  yaxis_title="人均收入(元)"
)
# 步骤五
fig.show()

结果如下:

python Plotly绘图工具的简单使用

② 原理说明

1、绘制图形轨迹,在ployly里面叫做trace,每一个轨迹是一个trace。
2、将轨迹包裹成一个列表,形成一个“轨迹列表”。一个轨迹放在一个列表中,多个轨迹也是放在一个列表中。
3、创建画布的同时,并将上述的“轨迹列表”,传入到Figure()中。
4、使用Layout添加其他的绘图参数,完善图形。
5、展示图形。

3)expression(“px”)库的绘图原理

① 简单的案例说明

iris = pd.read_excel("iris.xlsx",sheet_name="Sheet2")

fig = px.scatter(iris,x="花萼长度",y="花萼宽度",color="属种")
fig.show()

结果如下:

python Plotly绘图工具的简单使用

② 原理说明

1、直接使用px调用某个绘图方法时,会自动创建画布,并画出图形。

2、展示图形。

4、保存图形的两种方式

1)直接下载下来:保存成png静态图片

python Plotly绘图工具的简单使用

2)使用py.offline.plot(fig,filename=“XXX.html”)代码保存成html网页动态图片

iris = pd.read_excel("iris.xlsx",sheet_name="Sheet2")

fig = px.scatter(iris,x="花萼长度",y="花萼宽度",color="属种")
py.offline.plot(fig,filename="iris1.html")

结果如下:该文件是一个html文件,这里上传不了,自己下去尝试一下就知道了。

3)总结说明

  使用“照相机”那个下载按钮,可以直接将图片下载保存在本地,但是这个图片是一个静态图片,没有交互性。但是使用py.offline.plot()方法,可以将图片保存成一个html的网页格式,其他人可以在电脑上直接打开这个html网页,并且保留了图片的原始样式,具有交互性。 

5、绘制双y轴图

1)数据集如下

python Plotly绘图工具的简单使用

2)绘制不同地区的“任务完成量”和“任务完成率”情况

df = pd.read_excel("double_y.xlsx")

x = df["地区"]
y1 = df["完成量"]
y2 = df["完成率"]

trace0 = go.Bar(x=x,y=y1,
        marker=dict(color=["red","blue","green","darkgrey","darkblue","orange"]),
        opacity=0.5,
        name="不同地区的任务完成量")

trace1 = go.Scatter(x=x,y=y2,
          mode="lines",
          name="不同地区的任务完成率",
          # 【步骤一】:使用这个参数yaxis="y2",就是绘制双y轴图
          yaxis="y2")

data = [trace0,trace1]

layout = go.Layout(title="不同地区的任务完成量和任务完成率情况",
          xaxis=dict(title="地区"),
          yaxis=dict(title="不同地区的任务完成量"),
          # 【步骤二】:给第二个y轴,添加标题,指定第二个y轴,在右侧。
          yaxis2=dict(title="不同地区的任务完成率",overlaying="y",side="right"),
          legend=dict(x=0.78,y=0.98,font=dict(size=12,color="black")))

fig = go.Figure(data=data,layout=layout)
fig.show()

结果如下:

python Plotly绘图工具的简单使用

6、绘制多子图:一个画布上绘制多个图形

1)相关库和方法介绍

1、绘制多个子图,需要先导入tools库。from plotly import tools

2、tools.make_subplots(rows= ,cols=)用于指定绘图布局,rows和cols表示将画布布局成几行几列。

3、fig.append_trace()将每个图形轨迹trace,绘制在不同的位置上。

2)分别绘制不同地区的“任务完成量”和“任务完成率”情况

# 步骤一:导入相关库
from plotly import tools
# 步骤二:指定绘图布局
fig = tools.make_subplots(rows=2,cols=1)
# 步骤三:绘制图形轨迹
trace0 = go.Bar(x=x,y=y1,
        marker=dict(color=["red","blue","green","darkgrey","darkblue","orange"]),
        opacity=0.5,
        name="不同地区的任务完成量")    
trace1 = go.Scatter(x=x,y=y2,
          mode="lines",
          name="不同地区的任务完成率",
          line=dict(width=2,color="red"))
 # 步骤四:将第一个轨迹,添加到第1行的第1个位置
 #    将第二个轨迹,添加到第2行的第1个位置         
fig.append_trace(trace0,1,1)
fig.append_trace(trace1,2,1)
# 步骤四:根据自己的需求,给图形添加标题。height、width参数用于指定图形的宽和高
fig.update_layout(title="不同地区的任务量与完成量",height=800,width=800)
# 步骤五:展示图形
fig.show()

结果如下:

python Plotly绘图工具的简单使用

到此这篇关于python Plotly绘图工具的简单使用的文章就介绍到这了,更多相关python Plotly绘图内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python使用在线API查询IP对应的地理位置信息实例
Jun 01 Python
用实例解释Python中的继承和多态的概念
Apr 27 Python
Python list操作用法总结
Nov 10 Python
Python异常处理操作实例详解
May 10 Python
Python拼接字符串的7种方法总结
Nov 01 Python
python实现控制台打印的方法
Jan 12 Python
python 实现保存最新的三份文件,其余的都删掉
Dec 22 Python
Transpose 数组行列转置的限制方式
Feb 11 Python
Python定义一个Actor任务
Jul 29 Python
python如何利用Mitmproxy抓包
Oct 10 Python
Selenium环境变量配置(火狐浏览器)及验证实现
Dec 07 Python
pandas提升计算效率的一些方法汇总
May 30 Python
python 函数嵌套及多函数共同运行知识点讲解
Mar 03 #Python
python实现扫雷游戏
Mar 03 #Python
python实现从ftp服务器下载文件
Mar 03 #Python
python实现简单的购物程序代码实例
Mar 03 #Python
python实现跨excel sheet复制代码实例
Mar 03 #Python
python剪切视频与合并视频的实现
Mar 03 #Python
详解Pycharm出现out of memory的终极解决方法
Mar 03 #Python
You might like
解析CI即CodeIgniter框架在Nginx下的重写规则
2013/06/03 PHP
Android ProgressBar进度条和ProgressDialog进度框的展示DEMO
2013/06/19 PHP
通过PHP自带的服务器来查看正则匹配结果的方法
2015/12/24 PHP
PHP使用mysql与mysqli连接Mysql数据库用法示例
2016/07/07 PHP
ThinkPHP like模糊查询,like多匹配查询,between查询,in查询,一般查询书写方法
2018/09/26 PHP
jquery下将选择的checkbox的id组成字符串的方法
2010/11/28 Javascript
使用JQuery快速实现Tab的AJAX动态载入(实例讲解)
2013/12/11 Javascript
javascript结合ajax读取txt文件内容
2014/12/05 Javascript
javascript属性访问表达式用法分析
2015/04/25 Javascript
分享jQuery封装好的一些常用操作
2016/07/28 Javascript
jQuery弹出遮罩层效果完整示例
2016/09/13 Javascript
JavaScript SHA512加密算法详细代码
2016/10/06 Javascript
微信小程序 使用canvas制作K线实例详解
2017/01/12 Javascript
微信小程序 使用腾讯地图SDK详解及实现步骤
2017/02/28 Javascript
vue select二级联动第二级默认选中第一个option值的实例
2018/01/10 Javascript
使用FileReader API创建Vue文件阅读器组件
2018/04/03 Javascript
使用Layui搭建后台管理界面的操作方法
2019/09/20 Javascript
vue props对象validator自定义函数实例
2019/11/13 Javascript
全面解析Vue中的$nextTick
2020/12/24 Vue.js
[01:13]2014DOTA2西雅图邀请赛 舌尖上的TI4
2014/07/08 DOTA
[49:08]FNATIC vs Infamous 2019国际邀请赛小组赛 BO2 第二场 8.16
2019/08/18 DOTA
[01:01:52]完美世界DOTA2联赛PWL S2 GXR vs Magma 第二场 11.25
2020/11/26 DOTA
Python 序列化 pickle/cPickle模块使用介绍
2014/11/30 Python
django上传图片并生成缩略图方法示例
2017/12/11 Python
Python语言生成水仙花数代码示例
2017/12/18 Python
python 一个figure上显示多个图像的实例
2019/07/08 Python
python中doctest库实例用法
2020/12/31 Python
Html5 localStorage入门教程
2018/04/26 HTML / CSS
详解HTML5常用的语义化标签
2019/09/27 HTML / CSS
高级护理专业大学生求职信
2013/10/24 职场文书
水污染治理专业毕业生推荐信
2013/11/14 职场文书
诚信考试承诺书
2014/03/27 职场文书
社区矫正工作方案
2014/06/04 职场文书
大学运动会通讯稿
2015/07/18 职场文书
go语言基础 seek光标位置os包的使用
2021/05/09 Golang
Python实现Matplotlib,Seaborn动态数据图
2022/05/06 Python