基于h5py的使用及数据封装代码


Posted in Python onDecember 26, 2019

1. h5py简单介绍

h5py文件是存放两类对象的容器,数据集(dataset)和组(group),dataset类似数组类的数据集合,和numpy的数组差不多。group是像文件夹一样的容器,它好比python中的字典,有键(key)和值(value)。group中可以存放dataset或者其他的group。”键”就是组成员的名称,”值”就是组成员对象本身(组或者数据集),下面来看下如何创建组和数据集。

1.1 创建一个h5py文件

import h5py
#要是读取文件的话,就把w换成r
f=h5py.File("myh5py.hdf5","w")

在当前目录下会生成一个myh5py.hdf5文件。

2. 创建dataset数据集

import h5py
f=h5py.File("myh5py.hdf5","w")
#deset1是数据集的name,(20,)代表数据集的shape,i代表的是数据集的元素类型
d1=f.create_dataset("dset1", (20,), 'i')
for key in f.keys():
 print(key)
 print(f[key].name)
 print(f[key].shape)
 print(f[key].value)

输出:

dset1
/dset1
(20,)
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
import h5py
import numpy as np
f=h5py.File("myh5py.hdf5","w")
a=np.arange(20)
d1=f.create_dataset("dset1",data=a)
for key in f.keys():
 print(f[key].name)
 print(f[key].value)

输出:

/dset1
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]
2. hpf5用于封装训练集和测试集
#============================================================
# This prepare the hdf5 datasets of the DRIVE database
#============================================================
 
import os
import h5py
import numpy as np
from PIL import Image
 
def write_hdf5(arr,outfile):
 with h5py.File(outfile,"w") as f:
 f.create_dataset("image", data=arr, dtype=arr.dtype)
 
#------------Path of the images --------------------------------------------------------------
#train
original_imgs_train = "./DRIVE/training/images/"
groundTruth_imgs_train = "./DRIVE/training/1st_manual/"
borderMasks_imgs_train = "./DRIVE/training/mask/"
#test
original_imgs_test = "./DRIVE/test/images/"
groundTruth_imgs_test = "./DRIVE/test/1st_manual/"
borderMasks_imgs_test = "./DRIVE/test/mask/"
#---------------------------------------------------------------------------------------------
 
Nimgs = 20
channels = 3
height = 584
width = 565
dataset_path = "./DRIVE_datasets_training_testing/"
 
def get_datasets(imgs_dir,groundTruth_dir,borderMasks_dir,train_test="null"):
 imgs = np.empty((Nimgs,height,width,channels))
 groundTruth = np.empty((Nimgs,height,width))
 border_masks = np.empty((Nimgs,height,width))
 for path, subdirs, files in os.walk(imgs_dir): #list all files, directories in the path
  for i in range(len(files)):
   #original
   print "original image: " +files[i]
   img = Image.open(imgs_dir+files[i])
   imgs[i] = np.asarray(img)
   #corresponding ground truth
   groundTruth_name = files[i][0:2] + "_manual1.gif"
   print "ground truth name: " + groundTruth_name
   g_truth = Image.open(groundTruth_dir + groundTruth_name)
   groundTruth[i] = np.asarray(g_truth)
   #corresponding border masks
   border_masks_name = ""
   if train_test=="train":
    border_masks_name = files[i][0:2] + "_training_mask.gif"
   elif train_test=="test":
    border_masks_name = files[i][0:2] + "_test_mask.gif"
   else:
    print "specify if train or test!!"
    exit()
   print "border masks name: " + border_masks_name
   b_mask = Image.open(borderMasks_dir + border_masks_name)
   border_masks[i] = np.asarray(b_mask)
 
 print "imgs max: " +str(np.max(imgs))
 print "imgs min: " +str(np.min(imgs))
 assert(np.max(groundTruth)==255 and np.max(border_masks)==255)
 assert(np.min(groundTruth)==0 and np.min(border_masks)==0)
 print "ground truth and border masks are correctly withih pixel value range 0-255 (black-white)"
 #reshaping for my standard tensors
 imgs = np.transpose(imgs,(0,3,1,2))
 assert(imgs.shape == (Nimgs,channels,height,width))
 groundTruth = np.reshape(groundTruth,(Nimgs,1,height,width))
 border_masks = np.reshape(border_masks,(Nimgs,1,height,width))
 assert(groundTruth.shape == (Nimgs,1,height,width))
 assert(border_masks.shape == (Nimgs,1,height,width))
 return imgs, groundTruth, border_masks
 
if not os.path.exists(dataset_path):
 os.makedirs(dataset_path)
#getting the training datasets
imgs_train, groundTruth_train, border_masks_train = get_datasets(original_imgs_train,groundTruth_imgs_train,borderMasks_imgs_train,"train")
print "saving train datasets"
write_hdf5(imgs_train, dataset_path + "DRIVE_dataset_imgs_train.hdf5")
write_hdf5(groundTruth_train, dataset_path + "DRIVE_dataset_groundTruth_train.hdf5")
write_hdf5(border_masks_train,dataset_path + "DRIVE_dataset_borderMasks_train.hdf5")
 
#getting the testing datasets
imgs_test, groundTruth_test, border_masks_test = get_datasets(original_imgs_test,groundTruth_imgs_test,borderMasks_imgs_test,"test")
print "saving test datasets"
write_hdf5(imgs_test,dataset_path + "DRIVE_dataset_imgs_test.hdf5")
write_hdf5(groundTruth_test, dataset_path + "DRIVE_dataset_groundTruth_test.hdf5")
write_hdf5(border_masks_test,dataset_path + "DRIVE_dataset_borderMasks_test.hdf5")

遍历文件夹下的所有文件 os.walk( dir )

for parent, dir_names, file_names in os.walk(parent_dir): 
 for i in file_names: 
  print file_name

parent: 父路径

dir_names: 子文件夹

file_names: 文件名

以上这篇基于h5py的使用及数据封装代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python实现的金山快盘的签到程序
Jan 17 Python
Python中的生成器和yield详细介绍
Jan 09 Python
在Django的URLconf中使用多个视图前缀的方法
Jul 18 Python
python daemon守护进程实现
Aug 27 Python
Python实现对象转换为xml的方法示例
Jun 08 Python
django_orm查询性能优化方法
Aug 20 Python
Windows 安装 Anaconda3+PyCharm的方法步骤
Jun 13 Python
对python中的os.getpid()和os.fork()函数详解
Aug 08 Python
Python 实现OpenCV格式和PIL.Image格式互转
Jan 09 Python
python统计字符串中字母出现次数代码实例
Mar 02 Python
使用Python爬取弹出窗口信息的实例
Mar 14 Python
使用py-spy解决scrapy卡死的问题方法
Sep 29 Python
python深copy和浅copy区别对比解析
Dec 26 #Python
详解python opencv、scikit-image和PIL图像处理库比较
Dec 26 #Python
torch 中各种图像格式转换的实现方法
Dec 26 #Python
python两个_多个字典合并相加的实例代码
Dec 26 #Python
Python时间差中seconds和total_seconds的区别详解
Dec 26 #Python
python requests模拟登陆github的实现方法
Dec 26 #Python
python 实现按对象传值
Dec 26 #Python
You might like
php中$_REQUEST、$_POST、$_GET的区别和联系小结
2011/11/23 PHP
php中return的用法实例分析
2015/02/28 PHP
Yii实现的多级联动下拉菜单
2016/07/13 PHP
PHP使用new StdClass()创建空对象的方法分析
2017/06/06 PHP
php单元测试phpunit入门实例教程
2017/11/17 PHP
excel操作之Add Data to a Spreadsheet Cell
2007/06/12 Javascript
javascript 学习之旅 (3)
2009/02/05 Javascript
jquery.AutoComplete.js中文修正版(支持firefox)
2010/04/09 Javascript
js replace正则表达式应用案例讲解
2013/01/17 Javascript
form.submit()不能提交表单的原因分析
2014/10/23 Javascript
js实现的牛顿摆效果
2015/03/31 Javascript
Javascript之String对象详解
2016/06/08 Javascript
基于d3.js实现实时刷新的折线图
2016/08/03 Javascript
轻松理解vue的双向数据绑定问题
2017/10/30 Javascript
node thread.sleep实现示例
2018/06/20 Javascript
vue实现分页组件
2020/06/16 Javascript
小程序云开发如何实现图片上传及发表文字
2019/05/17 Javascript
vue3修改link标签默认icon无效问题详解
2019/10/09 Javascript
微信小程序实现可长按移动控件
2020/11/01 Javascript
node koa2 ssr项目搭建的方法步骤
2020/12/11 Javascript
[05:09]第二届DOTA2亚洲邀请赛决赛日比赛集锦:iG 3:0 OG夺冠
2017/04/05 DOTA
python executemany的使用及注意事项
2017/03/13 Python
python中的文件打开与关闭操作命令介绍
2018/04/26 Python
Linux下python与C++使用dlib实现人脸检测
2018/06/29 Python
Python实现处理逆波兰表达式示例
2018/07/30 Python
django admin组件使用方法详解
2019/07/19 Python
Python 处理文件的几种方式
2019/08/23 Python
python输出带颜色字体实例方法
2019/09/01 Python
使用Bazel编译TensorBoard教程
2020/02/15 Python
Flask和pyecharts实现动态数据可视化
2020/02/26 Python
python 基于selenium实现鼠标拖拽功能
2020/12/24 Python
HTML5新增加标签和功能概述
2016/09/05 HTML / CSS
Theo + George官方网站:都柏林时尚品牌
2019/04/08 全球购物
工程专业求职自荐书范文
2014/02/18 职场文书
大学入学感言
2015/08/01 职场文书
检举信的写法
2019/04/10 职场文书