pytorch finetuning 自己的图片进行训练操作


Posted in Python onJune 05, 2021

一、pytorch finetuning 自己的图片进行训练

这种读取图片的方式用的是torch自带的 ImageFolder,读取的文件夹必须在一个大的子文件下,按类别归好类。

就像我现在要区分三个类别。

pytorch finetuning 自己的图片进行训练操作

#perpare data set
#train data
train_data=torchvision.datasets.ImageFolder('F:/eyeDataSet/trainData',transform=transforms.Compose(
         [
            transforms.Scale(256),
            transforms.CenterCrop(224),
            transforms.ToTensor()
       ]))
print(len(train_data))
train_loader=DataLoader(train_data,batch_size=20,shuffle=True)

然后就是fine tuning自己的网络,在torch中可以对整个网络修改后,训练全部的参数也可以只训练其中的一部分,我这里就只训练最后一个全连接层。

torchvision中提供了很多常用的模型,比如resnet ,Vgg,Alexnet等等

# prepare model
mode1_ft_res18=torchvision.models.resnet18(pretrained=True)
for param in mode1_ft_res18.parameters():
    param.requires_grad=False
num_fc=mode1_ft_res18.fc.in_features
mode1_ft_res18.fc=torch.nn.Linear(num_fc,3)

定义自己的优化器,注意这里的参数只传入最后一层的

#loss function and optimizer
criterion=torch.nn.CrossEntropyLoss()
#parameters only train the last fc layer
optimizer=torch.optim.Adam(mode1_ft_res18.fc.parameters(),lr=0.001)

然后就可以开始训练了,定义好各种参数。

#start train
#label  not  one-hot encoder
EPOCH=1
for epoch in range(EPOCH):
    train_loss=0.
    train_acc=0.
    for step,data in enumerate(train_loader):
        batch_x,batch_y=data
        batch_x,batch_y=Variable(batch_x),Variable(batch_y)
        #batch_y not one hot
        #out is the probability of eatch class
        # such as one sample[-1.1009  0.1411  0.0320],need to calculate the max index
        # out shape is batch_size * class
        out=mode1_ft_res18(batch_x)
        loss=criterion(out,batch_y)
        train_loss+=loss.data[0]
        # pred is the expect class
        #batch_y is the true label
        pred=torch.max(out,1)[1]
        train_correct=(pred==batch_y).sum()
        train_acc+=train_correct.data[0]
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        if step%14==0:
            print('Epoch: ',epoch,'Step',step,
                  'Train_loss: ',train_loss/((step+1)*20),'Train acc: ',train_acc/((step+1)*20))

测试部分和训练部分类似这里就不一一说明。

这样就完整了对自己网络的训练测试,完整代码如下:

import torch
import numpy as np
import torchvision
from torchvision import transforms,utils
from torch.utils.data import DataLoader
from torch.autograd import Variable
#perpare data set
#train data
train_data=torchvision.datasets.ImageFolder('F:/eyeDataSet/trainData',transform=transforms.Compose(
           [
               transforms.Scale(256),
               transforms.CenterCrop(224),
               transforms.ToTensor()
         ]))
print(len(train_data))
train_loader=DataLoader(train_data,batch_size=20,shuffle=True)
 
#test data
test_data=torchvision.datasets.ImageFolder('F:/eyeDataSet/testData',transform=transforms.Compose(
           [
         transforms.Scale(256),
         transforms.CenterCrop(224),
         transforms.ToTensor()
         ]))
test_loader=DataLoader(test_data,batch_size=20,shuffle=True)
 
# prepare model
mode1_ft_res18=torchvision.models.resnet18(pretrained=True)
for param in mode1_ft_res18.parameters():
    param.requires_grad=False
num_fc=mode1_ft_res18.fc.in_features
mode1_ft_res18.fc=torch.nn.Linear(num_fc,3)
 
#loss function and optimizer
criterion=torch.nn.CrossEntropyLoss()
#parameters only train the last fc layer
optimizer=torch.optim.Adam(mode1_ft_res18.fc.parameters(),lr=0.001)
 
#start train
#label  not  one-hot encoder
EPOCH=1
for epoch in range(EPOCH):
    train_loss=0.
    train_acc=0.
    for step,data in enumerate(train_loader):
        batch_x,batch_y=data
        batch_x,batch_y=Variable(batch_x),Variable(batch_y)
        #batch_y not one hot
        #out is the probability of eatch class
        # such as one sample[-1.1009  0.1411  0.0320],need to calculate the max index
        # out shape is batch_size * class
        out=mode1_ft_res18(batch_x)
        loss=criterion(out,batch_y)
        train_loss+=loss.data[0]
        # pred is the expect class
        #batch_y is the true label
        pred=torch.max(out,1)[1]
        train_correct=(pred==batch_y).sum()
        train_acc+=train_correct.data[0]
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        if step%14==0:
            print('Epoch: ',epoch,'Step',step,
                  'Train_loss: ',train_loss/((step+1)*20),'Train acc: ',train_acc/((step+1)*20))
 
    #print('Epoch: ', epoch, 'Train_loss: ', train_loss / len(train_data), 'Train acc: ', train_acc / len(train_data))
 
# test model
mode1_ft_res18.eval()
eval_loss=0
eval_acc=0
for step ,data in enumerate(test_loader):
    batch_x,batch_y=data
    batch_x,batch_y=Variable(batch_x),Variable(batch_y)
    out=mode1_ft_res18(batch_x)
    loss = criterion(out, batch_y)
    eval_loss += loss.data[0]
    # pred is the expect class
    # batch_y is the true label
    pred = torch.max(out, 1)[1]
    test_correct = (pred == batch_y).sum()
    eval_acc += test_correct.data[0]
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
print( 'Test_loss: ', eval_loss / len(test_data), 'Test acc: ', eval_acc / len(test_data))

二、PyTorch 利用预训练模型进行Fine-tuning

在Deep Learning领域,很多子领域的应用,比如一些动物识别,食物的识别等,公开的可用的数据库相对于ImageNet等数据库而言,其规模太小了,无法利用深度网络模型直接train from scratch,容易引起过拟合,这时就需要把一些在大规模数据库上已经训练完成的模型拿过来,在目标数据库上直接进行Fine-tuning(微调),这个已经经过训练的模型对于目标数据集而言,只是一种相对较好的参数初始化方法而已,尤其是大数据集与目标数据集结构比较相似的话,经过在目标数据集上微调能够得到不错的效果。

Fine-tune预训练网络的步骤:

1. 首先更改预训练模型分类层全连接层的数目,因为一般目标数据集的类别数与大规模数据库的类别数不一致,更改为目标数据集上训练集的类别数目即可,一致的话则无需更改;

2. 把分类器前的网络的所有层的参数固定,即不让它们参与学习,不进行反向传播,只训练分类层的网络,这时学习率可以设置的大一点,如是原来初始学习率的10倍或几倍或0.01等,这时候网络训练的比较快,因为除了分类层,其它层不需要进行反向传播,可以多尝试不同的学习率设置。

3.接下来是设置相对较小的学习率,对整个网络进行训练,这时网络训练变慢啦。

下面对利用PyTorch深度学习框架Fine-tune预训练网络的过程中涉及到的固定可学习参数,对不同的层设置不同的学习率等进行详细讲解。

1. PyTorch对某些层固定网络的可学习参数的方法:

class Net(nn.Module):
    def __init__(self, num_classes=546):
        super(Net, self).__init__()
        self.features = nn.Sequential(
 
            nn.Conv2d(1, 64, kernel_size=3, stride=2, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
 
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
        )
 
        self.Conv1_1 = nn.Sequential(
 
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
 
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64),
        )
 
  for p in self.parameters():
            p.requires_grad=False
        self.Conv1_2 = nn.Sequential(
 
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
 
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64),
        )

如上述代码,则模型Net网络中self.features与self.Conv1_1层中的参数便是固定,不可学习的。这主要看代码:

for p in self.parameters():
    p.requires_grad=False

插入的位置,这段代码前的所有层的参数是不可学习的,也就没有反向传播过程。也可以指定某一层的参数不可学习,如下:

for p in  self.features.parameters():
    p.requires_grad=False

则 self.features层所有参数均是不可学习的。

注意,上述代码设置若要真正生效,在训练网络时需要在设置优化器如下:

optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), args.lr,
        momentum=args.momentum,
        weight_decay=args.weight_decay)

2. PyTorch之为不同的层设置不同的学习率

model = Net()
conv1_2_params = list(map(id, model.Conv1_2.parameters()))
base_params = filter(lambda p: id(p) not in conv1_2_params,
                     model.parameters())
optimizer = torch.optim.SGD([
            {'params': base_params},
            {'params': model.Conv1_2.parameters(), 'lr': 10 * args.lr}], args.lr,             
            momentum=args.momentum, weight_decay=args.weight_decay)

上述代码表示将模型Net网络的 self.Conv1_2层的学习率设置为传入学习率的10倍,base_params的学习没有明确设置,则默认为传入的学习率args.lr。

注意:

[{'params': base_params}, {'params': model.Conv1_2.parameters(), 'lr': 10 * args.lr}]

表示为列表中的字典结构。

这种方法设置不同的学习率显得不够灵活,可以为不同的层设置灵活的学习率,可以采用如下方法在adjust_learning_rate函数中设置:

def adjust_learning_rate(optimizer, epoch, args):
    lre = []
    lre.extend([0.01] * 10)
    lre.extend([0.005] * 10)
    lre.extend([0.0025] * 10)
    lr = lre[epoch]
    optimizer.param_groups[0]['lr'] = 0.9 * lr
    optimizer.param_groups[1]['lr'] = 10 * lr
    print(param_group[0]['lr'])
    print(param_group[1]['lr'])

上述代码中的optimizer.param_groups[0]就代表[{'params': base_params}, {'params': model.Conv1_2.parameters(), 'lr': 10 * args.lr}]中的'params': base_params},optimizer.param_groups[1]代表{'params': model.Conv1_2.parameters(), 'lr': 10 * args.lr},这里设置的学习率会把args.lr给覆盖掉,个人认为上述代码在设置学习率方面更灵活一些。上述代码也可如下变成实现(注意学习率随便设置的,未与上述代码保持一致):

def adjust_learning_rate(optimizer, epoch, args):
    lre = np.logspace(-2, -4, 40)
    lr = lre[epoch]
    for i in range(len(optimizer.param_groups)):
        param_group = optimizer.param_groups[i]
        if i == 0:
            param_group['lr'] = 0.9 * lr
        else:
            param_group['lr'] = 10 * lr
        print(param_group['lr'])

下面贴出SGD优化器的PyTorch实现,及其每个参数的设置和表示意义,具体如下:

import torch
from .optimizer import Optimizer, required
 
class SGD(Optimizer):
    r"""Implements stochastic gradient descent (optionally with momentum).
    Nesterov momentum is based on the formula from
    `On the importance of initialization and momentum in deep learning`__.
    Args:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        lr (float): learning rate
        momentum (float, optional): momentum factor (default: 0)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        dampening (float, optional): dampening for momentum (default: 0)
        nesterov (bool, optional): enables Nesterov momentum (default: False)
    Example:
        >>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
        >>> optimizer.zero_grad()
        >>> loss_fn(model(input), target).backward()
        >>> optimizer.step()
    __ http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf
    .. note::
        The implementation of SGD with Momentum/Nesterov subtly differs from
        Sutskever et. al. and implementations in some other frameworks.
        Considering the specific case of Momentum, the update can be written as
        .. math::
                  v = \rho * v + g \\
                  p = p - lr * v
        where p, g, v and :math:`\rho` denote the parameters, gradient,
        velocity, and momentum respectively.
        This is in contrast to Sutskever et. al. and
        other frameworks which employ an update of the form
        .. math::
             v = \rho * v + lr * g \\
             p = p - v
        The Nesterov version is analogously modified.
    """
 
    def __init__(self, params, lr=required, momentum=0, dampening=0,
                 weight_decay=0, nesterov=False):
        if lr is not required and lr < 0.0:
            raise ValueError("Invalid learning rate: {}".format(lr))
        if momentum < 0.0:
            raise ValueError("Invalid momentum value: {}".format(momentum))
        if weight_decay < 0.0:
            raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
 
        defaults = dict(lr=lr, momentum=momentum, dampening=dampening,
                        weight_decay=weight_decay, nesterov=nesterov)
        if nesterov and (momentum <= 0 or dampening != 0):
            raise ValueError("Nesterov momentum requires a momentum and zero dampening")
        super(SGD, self).__init__(params, defaults)
 
    def __setstate__(self, state):
        super(SGD, self).__setstate__(state)
        for group in self.param_groups:
            group.setdefault('nesterov', False)
 
    def step(self, closure=None):
        """Performs a single optimization step.
        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()
 
        for group in self.param_groups:
            weight_decay = group['weight_decay']
            momentum = group['momentum']
            dampening = group['dampening']
            nesterov = group['nesterov']
 
            for p in group['params']:
                if p.grad is None:
                    continue
                d_p = p.grad.data
                if weight_decay != 0:
                    d_p.add_(weight_decay, p.data)
                if momentum != 0:
                    param_state = self.state[p]
                    if 'momentum_buffer' not in param_state:
                        buf = param_state['momentum_buffer'] = torch.zeros_like(p.data)
                        buf.mul_(momentum).add_(d_p)
                    else:
                        buf = param_state['momentum_buffer']
                        buf.mul_(momentum).add_(1 - dampening, d_p)
                    if nesterov:
                        d_p = d_p.add(momentum, buf)
                    else:
                        d_p = buf
 
                p.data.add_(-group['lr'], d_p)
 
        return loss

经验总结:

在Fine-tuning时最好不要隔层设置层的参数的可学习与否,这样做一般效果饼不理想,一般准则即可,即先Fine-tuning分类层,学习率设置的大一些,然后在将整个网络设置一个较小的学习率,所有层一起训练。

至于不先经过Fine-tune分类层,而是将整个网络所有层一起训练,只是分类层的学习率相对设置大一些,这样做也可以,至于哪个效果更好,没评估过。当用三元组损失(triplet loss)微调用softmax loss训练的网络时,可以设置阶梯型的较小学习率,整个网络所有层一起训练,效果比较好,而不用先Fine-tune分类层前一层的输出。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
轻松掌握python设计模式之访问者模式
Nov 18 Python
Python探索之爬取电商售卖信息代码示例
Oct 27 Python
python正则表达式面试题解答
Apr 28 Python
python实现爬取百度图片的方法示例
Jul 06 Python
python删除列表元素的三种方法(remove,pop,del)
Jul 22 Python
Python的条件锁与事件共享详解
Sep 12 Python
Python笔记之工厂模式
Nov 20 Python
python文件绝对路径写法介绍(windows)
Dec 25 Python
pymysql的简单封装代码实例
Jan 08 Python
利用matplotlib为图片上添加触发事件进行交互
Apr 23 Python
python如何控制进程或者线程的个数
Oct 16 Python
Python基于爬虫实现全网搜索并下载音乐
Feb 14 Python
Python 如何将integer转化为罗马数(3999以内)
Jun 05 #Python
刚学完怎么用Python实现定时任务,转头就跑去撩妹!
OpenCV中resize函数插值算法的实现过程(五种)
Jun 05 #Python
OpenCV全景图像拼接的实现示例
opencv 分类白天与夜景视频的方法
python如何利用traceback获取详细的异常信息
Jun 05 #Python
Python异常类型以及处理方法汇总
Jun 05 #Python
You might like
从零开始学YII2框架(三)扩展插件yii2-gird
2014/08/20 PHP
php的4种常见运行方式
2015/03/20 PHP
制作个性化的WordPress登陆界面的实例教程
2016/05/21 PHP
Laravel框架路由设置与使用示例
2018/06/12 PHP
分享几种好用的PHP自定义加密函数(可逆/不可逆)
2020/09/15 PHP
写JQuery插件的基本知识
2013/11/25 Javascript
location.href用法总结(最主要的)
2013/12/27 Javascript
javascript基于DOM实现权限选择实例分析
2015/05/14 Javascript
js中 javascript:void(0) 用法详解
2015/08/11 Javascript
JS获取时间的相关函数及时间戳与时间日期之间的转换
2016/02/04 Javascript
jQuery控制frames及frame页面JS的方法
2016/03/08 Javascript
图解prototype、proto和constructor的三角关系
2016/07/31 Javascript
详解javascript中的babel到底是什么
2018/06/21 Javascript
vue2 v-model/v-text 中使用过滤器的方法示例
2019/05/09 Javascript
关于引入vue.js 文件的知识点总结
2020/01/28 Javascript
[05:05]DOTA2亚洲邀请赛 战队出场仪式
2015/02/07 DOTA
Python实现购物系统(示例讲解)
2017/09/13 Python
python3实现表白神器
2019/04/09 Python
Python增强赋值和共享引用注意事项小结
2019/05/28 Python
梅尔频率倒谱系数(mfcc)及Python实现
2019/06/18 Python
基于python实现自动化办公学习笔记(CSV、word、Excel、PPT)
2019/08/06 Python
python爬虫增加访问量的方法
2019/08/22 Python
通过Python扫描代码关键字并进行预警的实现方法
2020/05/24 Python
Pytorch学习之torch用法----比较操作(Comparison Ops)
2020/06/28 Python
html5 迷宫游戏(碰撞检测)实例一
2013/07/25 HTML / CSS
阿迪达斯芬兰官方网站:adidas芬兰
2017/01/30 全球购物
美国婚戒购物网站:Anjays Designs
2017/06/28 全球购物
新闻专业应届生求职信
2013/10/31 职场文书
应届实习生的自我评价范文
2014/01/05 职场文书
销售员求职个人的自我评价
2014/02/19 职场文书
2015年禁毒工作总结
2015/04/30 职场文书
护士年终工作总结不会写?各科护士模板总结
2020/01/02 职场文书
python入门之算法学习
2021/04/22 Python
如何用python反转图片,视频
2021/04/24 Python
php修改word的实例方法
2021/11/17 PHP
深入理解pytorch库的dockerfile
2022/06/10 Python