关于Numpy之repeat、tile的用法总结


Posted in Python onJune 02, 2021

repeat函数的作用:①扩充数组元素 ②降低数组维度

numpy.repeat(a, repeats, axis=None):若axis=None,对于多维数组而言,可以将多维数组变化为一维数组,然后再根据repeats参数扩充数组元素;若axis=M,表示数组在轴M上扩充数组元素。

下面以3维数组为例,了解下repeat函数的使用方法:

In [1]: import numpy as np 
In [2]: arr = np.arange(12).reshape(1,4,3) 
In [3]: arr
Out[3]:
array([[[ 0,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8],
        [ 9, 10, 11]]])

①repeats为整数N,axis=None:数组arr首先被扁平化,然后将数组arr中的各个元素 依次重复N次

In [4]: arr.repeat(2)
Out[4]:
array([ 0,  0,  1,  1,  2,  2,  3,  3,  4,  4,  5,  5,  6,  6,  7,  7,  8,
        8,  9,  9, 10, 10, 11, 11])

②repeats为整数数组rp_arr,axis=None:数组arr首先被扁平化,然后再将数组arr中元素依次重复对应rp_arr数组中元素对应次数。若rp_arr为一个值的一维数组,则数组arr中各个元素重复相同次数,否则rp_arr数组长度必须和数组arr的长度相等,否则报错

a:rp_arr为单值一维数组,进行广播

In [5]: arr.repeat([2])
Out[5]:
array([ 0,  0,  1,  1,  2,  2,  3,  3,  4,  4,  5,  5,  6,  6,  7,  7,  8,
        8,  9,  9, 10, 10, 11, 11])

b:rp_arr长度小于数组arr长度,无法进行广播,报错

In [6]: arr.repeat([2,3,4])
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-6-d3b52907284c> in <module>()
----> 1 arr.repeat([2,3,4])

ValueError: operands could not be broadcast together with shape (12,) (3,)

c:rp_arr长度和数组arr长度相等

In [7]: arr.repeat(np.arange(12))
Out[7]:
array([ 1,  2,  2,  3,  3,  3,  4,  4,  4,  4,  5,  5,  5,  5,  5,  6,  6,
        6,  6,  6,  6,  7,  7,  7,  7,  7,  7,  7,  8,  8,  8,  8,  8,  8,
        8,  8,  9,  9,  9,  9,  9,  9,  9,  9,  9, 10, 10, 10, 10, 10, 10,
       10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11])

d:rp_arr长度大于数组arr长度,也无法广播,报错

In [8]: arr.repeat(np.arange(13))
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-8-ec8454224d1b> in <module>()
----> 1 arr.repeat(np.arange(13))

ValueError: operands could not be broadcast together with shape (12,) (13,)

结论:两个数组满足广播的条件是两个数组的后缘维度(即从末尾开始算起的维度)的轴长度相等或其中一方的长度为1

③repeats为整数N,axis=M:数组arr的轴M上的每个元素重复N次,M=-1代表最后一条轴

In [9]: arr.repeat(2,axis=0)
Out[9]:
array([[[ 0,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8],
        [ 9, 10, 11]],
 
       [[ 0,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8],
        [ 9, 10, 11]]])
In [12]: arr.repeat(2,axis=-1)#arr.repeat(2,axis=-1)等同于arr.repeat(2,axis=2)
Out[12]:
array([[[ 0,  0,  1,  1,  2,  2],
        [ 3,  3,  4,  4,  5,  5],
        [ 6,  6,  7,  7,  8,  8],
        [ 9,  9, 10, 10, 11, 11]]])

④repeats为整数数组rp_arr,axis=M:把数组arr1轴M上的元素依次重复对应rp_arr数组中元素对应次数。若rp_arr为一个值的一维数组,则数组arr1轴M上的各个元素重复相同次数,否则rp_arr数组长度必须和数组arr1轴M的长度相等,否则报错

a:rp_arr长度和数组arr1轴M上长度相等

在轴0上扩充数组元素

In [13]: arr1 = np.arange(24).reshape(4,2,3) 
In [14]: arr1
Out[14]:
array([[[ 0,  1,  2],
        [ 3,  4,  5]],
 
       [[ 6,  7,  8],
        [ 9, 10, 11]],
 
       [[12, 13, 14],
        [15, 16, 17]],
 
       [[18, 19, 20],
        [21, 22, 23]]])
 
In [15]: arr1.repeat((1,2,3,4),axis=0)
Out[15]:
array([[[ 0,  1,  2],
        [ 3,  4,  5]],
 
       [[ 6,  7,  8],
        [ 9, 10, 11]],
 
       [[ 6,  7,  8],
        [ 9, 10, 11]],
 
       [[12, 13, 14],
        [15, 16, 17]],
 
       [[12, 13, 14],
        [15, 16, 17]],
 
       [[12, 13, 14],
        [15, 16, 17]],
 
       [[18, 19, 20],
        [21, 22, 23]],
 
       [[18, 19, 20],
        [21, 22, 23]],
 
       [[18, 19, 20],
        [21, 22, 23]],
 
       [[18, 19, 20],
        [21, 22, 23]]])

在轴1上扩充数组元素

In [19]: arr1.repeat([1,2],axis=1)
Out[19]:
array([[[ 0,  1,  2],
        [ 3,  4,  5],
        [ 3,  4,  5]],
 
       [[ 6,  7,  8],
        [ 9, 10, 11],
        [ 9, 10, 11]],
 
       [[12, 13, 14],
        [15, 16, 17],
        [15, 16, 17]],
 
       [[18, 19, 20],
        [21, 22, 23],
        [21, 22, 23]]])

b:rp_arr为单值数组时,进行广播

In [20]: arr1.repeat([2],axis=0)
Out[20]:
array([[[ 0,  1,  2],
        [ 3,  4,  5]],
 
       [[ 0,  1,  2],
        [ 3,  4,  5]],
 
       [[ 6,  7,  8],
        [ 9, 10, 11]],
 
       [[ 6,  7,  8],
        [ 9, 10, 11]],
 
       [[12, 13, 14],
        [15, 16, 17]],
 
       [[12, 13, 14],
        [15, 16, 17]],
 
       [[18, 19, 20],
        [21, 22, 23]],
 
       [[18, 19, 20],
        [21, 22, 23]]])

c:rp_arr和数组arr1某轴不满足广播条件,则报错

In [21]: arr1.repeat((1,2,3),axis=0)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-21-8ae4dc97e410> in <module>()
----> 1 arr1.repeat((1,2,3),axis=0)

ValueError: operands could not be broadcast together with shape (4,) (3,)

tile函数两个作用:①扩充数组元素 ②提升数组维度

numpy.tile(A, reps):根据reps中元素扩充数组A中对应轴上的元素

①reps为整数N:可以把整数N理解成含一个元素N的序列reps,若数组.ndim大于reps序列的长度,则需在reps序列的索引为0的位置开始添加元素1,直到reps的长度和数组的维度数相等,然后数组各轴上的元素依次重复reps序列中元素对应的次数

对于一维数组而言:是整体数组重复N次,从数组的最后一位置开始重复,注意与repeat函数的区别

In [26]: arr3 = np.arange(4) 
In [27]: arr3
Out[27]: array([0, 1, 2, 3]) 
In [28]: np.tile(arr3,2)
Out[28]: array([0, 1, 2, 3, 0, 1, 2, 3])

对多维数组而言:arr2.ndim=3,,reps=[2,],可以看出数组的长度大于序列reps的长度,因此需要向reps中添加元素,变成reps=[1,1,2],然后arr2数组再根据reps中的元素重复其对应轴上的元素,reps=[1,1,2]代表数组arr2在轴0上各个元素重复1次,在轴1上的各个元素重复1次,在轴1上的各个元素重复2次

In [29]: arr2 = np.arange(24).reshape(4,2,3) 
In [30]: arr2
Out[30]:
array([[[ 0,  1,  2],
        [ 3,  4,  5]],
 
       [[ 6,  7,  8],
        [ 9, 10, 11]],
 
       [[12, 13, 14],
        [15, 16, 17]],
 
       [[18, 19, 20],
        [21, 22, 23]]])
 
In [31]: np.tile(arr2,2)
Out[31]:
array([[[ 0,  1,  2,  0,  1,  2],
        [ 3,  4,  5,  3,  4,  5]],
 
       [[ 6,  7,  8,  6,  7,  8],
        [ 9, 10, 11,  9, 10, 11]],
 
       [[12, 13, 14, 12, 13, 14],
        [15, 16, 17, 15, 16, 17]],
 
       [[18, 19, 20, 18, 19, 20],
        [21, 22, 23, 21, 22, 23]]])

②reps为整数序列rp_arr:若数组.ndim大于rp_arr长度,方法同①相同,若数组ndim小于rp_arr长度,则需在数组的首缘维添加新轴,直到数组的维度数和rp_arr长度相等,然后数组各轴上的元素依次重复reps序列中元素对应的次数

a:数组维度大于rp_arr长度:需rp_arr提升为(1,2,3)

In [33]: arr2 = np.arange(24).reshape(4,2,3) 
In [34]: arr2
Out[34]:
array([[[ 0,  1,  2],
        [ 3,  4,  5]],
 
       [[ 6,  7,  8],
        [ 9, 10, 11]],
 
       [[12, 13, 14],
        [15, 16, 17]],
 
       [[18, 19, 20],
        [21, 22, 23]]])
 
In [35]: np.tile(arr2,(2,3))
Out[35]:
array([[[ 0,  1,  2,  0,  1,  2,  0,  1,  2],
        [ 3,  4,  5,  3,  4,  5,  3,  4,  5],
        [ 0,  1,  2,  0,  1,  2,  0,  1,  2],
        [ 3,  4,  5,  3,  4,  5,  3,  4,  5]],
 
       [[ 6,  7,  8,  6,  7,  8,  6,  7,  8],
        [ 9, 10, 11,  9, 10, 11,  9, 10, 11],
        [ 6,  7,  8,  6,  7,  8,  6,  7,  8],
        [ 9, 10, 11,  9, 10, 11,  9, 10, 11]],
 
       [[12, 13, 14, 12, 13, 14, 12, 13, 14],
        [15, 16, 17, 15, 16, 17, 15, 16, 17],
        [12, 13, 14, 12, 13, 14, 12, 13, 14],
        [15, 16, 17, 15, 16, 17, 15, 16, 17]],
 
       [[18, 19, 20, 18, 19, 20, 18, 19, 20],
        [21, 22, 23, 21, 22, 23, 21, 22, 23],
        [18, 19, 20, 18, 19, 20, 18, 19, 20],
        [21, 22, 23, 21, 22, 23, 21, 22, 23]]])

b:数组的维度小于rp_arr的长度:需在数组的首缘维度新增加一条轴,使其shape变为(1,4,2,3)

In [36]: np.tile(arr2,(2,1,1,3))
Out[36]:
array([[[[ 0,  1,  2,  0,  1,  2,  0,  1,  2],
         [ 3,  4,  5,  3,  4,  5,  3,  4,  5]],
 
        [[ 6,  7,  8,  6,  7,  8,  6,  7,  8],
         [ 9, 10, 11,  9, 10, 11,  9, 10, 11]],
 
        [[12, 13, 14, 12, 13, 14, 12, 13, 14],
         [15, 16, 17, 15, 16, 17, 15, 16, 17]],
 
        [[18, 19, 20, 18, 19, 20, 18, 19, 20],
         [21, 22, 23, 21, 22, 23, 21, 22, 23]]],
 
 
       [[[ 0,  1,  2,  0,  1,  2,  0,  1,  2],
         [ 3,  4,  5,  3,  4,  5,  3,  4,  5]],
 
        [[ 6,  7,  8,  6,  7,  8,  6,  7,  8],
         [ 9, 10, 11,  9, 10, 11,  9, 10, 11]],
 
        [[12, 13, 14, 12, 13, 14, 12, 13, 14],
         [15, 16, 17, 15, 16, 17, 15, 16, 17]],
 
        [[18, 19, 20, 18, 19, 20, 18, 19, 20],
         [21, 22, 23, 21, 22, 23, 21, 22, 23]]]])

numpy的repeat和tile 用来复制数组

repeat和tile都可以用来复制数组的,但是有一些区别

关键区别在于repeat是对于元素的复制,tile是以整个数组为单位的 ,repeat复制时元素依次复制,注意不要用错,区别类似于[1,1,2,2]和[1,2,1,2]

repeat

用法

np.repeat(a, repeats, axis=None)

重复复制数组a的元素,元素的定义与axis有关,axis不指定时,数组会被展开进行复制,每个元素就是一个值,指定axis时,就是aixis指定维度上的一个元素

a = np.array([[1,2], 
                      [3,4]])

不指定axis,默认None,这时候数组会被展开成1维,再进行复制

np.repeat(a, 2)  # 所有元素依次复制相同的次数

关于Numpy之repeat、tile的用法总结

参数是列表

np.repeat(a, [1, 2, 1, 2])  # 如果第二个参数是列表,列表长度必须和a的复制可选元素数目相等,这里都是4

关于Numpy之repeat、tile的用法总结

指定axis

指定时,就是指定了复制元素沿的维度,这时候就不会把数组展平,会维持原来的维度数

np.repeat(a, 2,  axi=0)  # 所有沿着0维的元素依次复制相同的次数

关于Numpy之repeat、tile的用法总结

np.repeat(a, [1, 2], axis=1)  # 第二个参数是列表,列表长度必须和a的复制可选元素数目相等,这里是2

结果如下,复制元素从第1维度算,可以看到第一列被复制了一次,第二列被复制了两次

关于Numpy之repeat、tile的用法总结

tile

用法

np.tile(a, repeats)

复制数组,repeats可以是整数或者元组、数组

repeats是整数

示例如下,它会将数组复制两份,并且在最后一维将两个元素叠加在一起,数组的维数不变,最后一维根据复制次数加倍

关于Numpy之repeat、tile的用法总结

repeats是列表或元组

如果列表长度是1,和整数时相同。

列表长度不为1时,列表从后向前看,最后一项是2,所以复制两个数组,在最后一维进行叠加,倒数第二项是3,将前步的结果进行复制,并在倒数第二维,结果如下

关于Numpy之repeat、tile的用法总结

当列表的长度超过数组的维数时,和前面类似,从后向前复制,复制结果会增加维度与列表的维数匹配,结果如下,在上面的基础上,增加了一维

关于Numpy之repeat、tile的用法总结

复制结果的shape

关于Numpy之repeat、tile的用法总结

但是对于 简单的单个数组重复,个人更喜欢使用stack和concatenate将同一个数组堆叠起来

以上为个人经验,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
在Python中操作时间之mktime()方法的使用教程
May 22 Python
python实现中文转换url编码的方法
Jun 14 Python
python+pyqt5编写md5生成器
Mar 18 Python
Django框架登录加上验证码校验实现验证功能示例
May 23 Python
anaconda如何查看并管理python环境
Jul 05 Python
Python hashlib模块加密过程解析
Nov 05 Python
使用Python制作新型冠状病毒实时疫情图
Jan 28 Python
python logging.basicConfig不生效的原因及解决
Feb 20 Python
pyqt5 textEdit、lineEdit操作的示例代码
Aug 12 Python
使用Python将xmind脑图转成excel用例的实现代码(一)
Oct 12 Python
python爬虫爬取淘宝商品比价(附淘宝反爬虫机制解决小办法)
Dec 03 Python
Pytest中skip和skipif的具体使用方法
Jun 30 Python
Matlab如何实现矩阵复制扩充
Jun 02 #Python
给numpy.array增加维度的超简单方法
Jun 02 #Python
pytorch model.cuda()花费时间很长的解决
如何理解及使用Python闭包
python pygame入门教程
python plt.plot bar 如何设置绘图尺寸大小
python用tkinter开发的扫雷游戏
You might like
微信公众号开发之语音消息识别php代码
2016/08/08 PHP
PHP实现获取ip地址的5种方法,以及插入用户登录日志操作示例
2019/02/28 PHP
PHP保存Base64图片base64_decode的问题整理
2019/11/04 PHP
javascript操作文本框readOnly
2007/05/15 Javascript
基于jQuery的弹出框插件
2012/03/18 Javascript
脚本合并提升javascript性能示例
2014/02/24 Javascript
浅谈JavaScript的Polymer框架中的事件绑定
2015/07/29 Javascript
jquery代码实现多选、不同分享功能
2015/07/31 Javascript
JavaScript中的Function函数
2015/08/27 Javascript
《JavaScript高级编程》学习笔记之object和array引用类型
2015/11/01 Javascript
javascript实现C语言经典程序题
2015/11/29 Javascript
浅谈JavaScript异步编程
2017/01/20 Javascript
javascript数据结构中栈的应用之符号平衡问题
2017/04/11 Javascript
angularjs 缓存的使用详解
2018/03/19 Javascript
vue2.0 中使用transition实现动画效果使用心得
2018/08/13 Javascript
angularJS1 url中携带参数的获取方法
2018/10/09 Javascript
vue 自定指令生成uuid滚动监听达到tab表格吸顶效果的代码
2020/09/16 Javascript
[18:20]DOTA2 HEROS教学视频教你分分钟做大人-昆卡
2014/06/11 DOTA
[44:40]Spirit vs Navi Supermajor小组赛 A组败者组第一轮 BO3 第一场 6.2
2018/06/03 DOTA
Python爬虫框架Scrapy安装使用步骤
2014/04/01 Python
python通过pil将图片转换成黑白效果的方法
2015/03/16 Python
python实现移位加密和解密
2019/03/22 Python
详解pycharm连接不上mysql数据库的解决办法
2020/01/10 Python
python绘制玫瑰的实现代码
2020/03/02 Python
python实现移动木板小游戏
2020/10/09 Python
Otel.com:折扣酒店预订
2017/08/24 全球购物
财务总经理岗位职责
2014/02/16 职场文书
教书育人演讲稿
2014/09/11 职场文书
2014年教育培训工作总结
2014/12/08 职场文书
员工辞职信怎么写
2015/02/27 职场文书
成绩单家长意见
2015/06/03 职场文书
解决mysql模糊查询索引失效问题的几种方法
2021/06/18 MySQL
Win11如何设置右键单击显示所有选项?Win11右键单击显示所有选项设置教程
2022/04/08 数码科技
解决 Redis 秒杀超卖场景的高并发
2022/04/12 Redis
Java 多线程并发FutureTask
2022/06/28 Java/Android
Docker部署Mysql8的实现步骤
2022/07/07 Servers