使用TensorFlow-Slim进行图像分类的实现


Posted in Python onDecember 31, 2019

参考 https://github.com/tensorflow/models/tree/master/slim

使用TensorFlow-Slim进行图像分类

准备

安装TensorFlow

参考 https://www.tensorflow.org/install/

如在Ubuntu下安装TensorFlow with GPU support, python 2.7版本

wget https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.2.0-cp27-none-linux_x86_64.whl
pip install tensorflow_gpu-1.2.0-cp27-none-linux_x86_64.whl

下载TF-slim图像模型库

cd $WORKSPACE
git clone https://github.com/tensorflow/models/

准备数据

有不少公开数据集,这里以官网提供的Flowers为例。

官网提供了下载和转换数据的代码,为了理解代码并能使用自己的数据,这里参考官方提供的代码进行修改。

cd $WORKSPACE/data
wget http://download.tensorflow.org/example_images/flower_photos.tgz
tar zxf flower_photos.tgz

数据集文件夹结构如下:

flower_photos
├── daisy
│  ├── 100080576_f52e8ee070_n.jpg
│  └── ...
├── dandelion
├── LICENSE.txt
├── roses
├── sunflowers
└── tulips

由于实际情况中我们自己的数据集并不一定把图片按类别放在不同的文件夹里,故我们生成list.txt来表示图片路径与标签的关系。

Python代码:

import os

class_names_to_ids = {'daisy': 0, 'dandelion': 1, 'roses': 2, 'sunflowers': 3, 'tulips': 4}
data_dir = 'flower_photos/'
output_path = 'list.txt'

fd = open(output_path, 'w')
for class_name in class_names_to_ids.keys():
  images_list = os.listdir(data_dir + class_name)
  for image_name in images_list:
    fd.write('{}/{} {}\n'.format(class_name, image_name, class_names_to_ids[class_name]))

fd.close()

为了方便后期查看label标签,也可以定义labels.txt:

daisy
dandelion
roses
sunflowers
tulips

随机生成训练集与验证集:

Python代码:

import random

_NUM_VALIDATION = 350
_RANDOM_SEED = 0
list_path = 'list.txt'
train_list_path = 'list_train.txt'
val_list_path = 'list_val.txt'

fd = open(list_path)
lines = fd.readlines()
fd.close()
random.seed(_RANDOM_SEED)
random.shuffle(lines)

fd = open(train_list_path, 'w')
for line in lines[_NUM_VALIDATION:]:
  fd.write(line)

fd.close()
fd = open(val_list_path, 'w')
for line in lines[:_NUM_VALIDATION]:
  fd.write(line)

fd.close()

生成TFRecord数据:

Python代码:

import sys
sys.path.insert(0, '../models/slim/')
from datasets import dataset_utils
import math
import os
import tensorflow as tf

def convert_dataset(list_path, data_dir, output_dir, _NUM_SHARDS=5):
  fd = open(list_path)
  lines = [line.split() for line in fd]
  fd.close()
  num_per_shard = int(math.ceil(len(lines) / float(_NUM_SHARDS)))
  with tf.Graph().as_default():
    decode_jpeg_data = tf.placeholder(dtype=tf.string)
    decode_jpeg = tf.image.decode_jpeg(decode_jpeg_data, channels=3)
    with tf.Session('') as sess:
      for shard_id in range(_NUM_SHARDS):
        output_path = os.path.join(output_dir,
          'data_{:05}-of-{:05}.tfrecord'.format(shard_id, _NUM_SHARDS))
        tfrecord_writer = tf.python_io.TFRecordWriter(output_path)
        start_ndx = shard_id * num_per_shard
        end_ndx = min((shard_id + 1) * num_per_shard, len(lines))
        for i in range(start_ndx, end_ndx):
          sys.stdout.write('\r>> Converting image {}/{} shard {}'.format(
            i + 1, len(lines), shard_id))
          sys.stdout.flush()
          image_data = tf.gfile.FastGFile(os.path.join(data_dir, lines[i][0]), 'rb').read()
          image = sess.run(decode_jpeg, feed_dict={decode_jpeg_data: image_data})
          height, width = image.shape[0], image.shape[1]
          example = dataset_utils.image_to_tfexample(
            image_data, b'jpg', height, width, int(lines[i][1]))
          tfrecord_writer.write(example.SerializeToString())
        tfrecord_writer.close()
  sys.stdout.write('\n')
  sys.stdout.flush()

os.system('mkdir -p train')
convert_dataset('list_train.txt', 'flower_photos', 'train/')
os.system('mkdir -p val')
convert_dataset('list_val.txt', 'flower_photos', 'val/')

得到的文件夹结构如下:

data
├── flower_photos
├── labels.txt
├── list_train.txt
├── list.txt
├── list_val.txt
├── train
│  ├── data_00000-of-00005.tfrecord
│  ├── ...
│  └── data_00004-of-00005.tfrecord
└── val
  ├── data_00000-of-00005.tfrecord
  ├── ...
  └── data_00004-of-00005.tfrecord

(可选)下载模型

官方提供了不少预训练模型,这里以Inception-ResNet-v2以例。

cd $WORKSPACE/checkpoints
wget http://download.tensorflow.org/models/inception_resnet_v2_2016_08_30.tar.gz
tar zxf inception_resnet_v2_2016_08_30.tar.gz

训练

读入数据

官方提供了读入Flowers数据集的代码models/slim/datasets/flowers.py,同样这里也是参考并修改成能读入上面定义的通用数据集。

把下面代码写入models/slim/datasets/dataset_classification.py。

import os
import tensorflow as tf
slim = tf.contrib.slim

def get_dataset(dataset_dir, num_samples, num_classes, labels_to_names_path=None, file_pattern='*.tfrecord'):
  file_pattern = os.path.join(dataset_dir, file_pattern)
  keys_to_features = {
    'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),
    'image/format': tf.FixedLenFeature((), tf.string, default_value='png'),
    'image/class/label': tf.FixedLenFeature(
      [], tf.int64, default_value=tf.zeros([], dtype=tf.int64)),
  }
  items_to_handlers = {
    'image': slim.tfexample_decoder.Image(),
    'label': slim.tfexample_decoder.Tensor('image/class/label'),
  }
  decoder = slim.tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers)
  items_to_descriptions = {
    'image': 'A color image of varying size.',
    'label': 'A single integer between 0 and ' + str(num_classes - 1),
  }
  labels_to_names = None
  if labels_to_names_path is not None:
    fd = open(labels_to_names_path)
    labels_to_names = {i : line.strip() for i, line in enumerate(fd)}
    fd.close()
  return slim.dataset.Dataset(
      data_sources=file_pattern,
      reader=tf.TFRecordReader,
      decoder=decoder,
      num_samples=num_samples,
      items_to_descriptions=items_to_descriptions,
      num_classes=num_classes,
      labels_to_names=labels_to_names)

构建模型

官方提供了许多模型在models/slim/nets/。

如需要自定义模型,则参考官方提供的模型并放在对应的文件夹即可。

开始训练

官方提供了训练脚本,如果使用官方的数据读入和处理,可使用以下方式开始训练。

cd $WORKSPACE/models/slim
CUDA_VISIBLE_DEVICES="0" python train_image_classifier.py \
  --train_dir=train_logs \
  --dataset_name=flowers \
  --dataset_split_name=train \
  --dataset_dir=../../data/flowers \
  --model_name=inception_resnet_v2 \
  --checkpoint_path=../../checkpoints/inception_resnet_v2_2016_08_30.ckpt \
  --checkpoint_exclude_scopes=InceptionResnetV2/Logits,InceptionResnetV2/AuxLogits \
  --trainable_scopes=InceptionResnetV2/Logits,InceptionResnetV2/AuxLogits \
  --max_number_of_steps=1000 \
  --batch_size=32 \
  --learning_rate=0.01 \
  --learning_rate_decay_type=fixed \
  --save_interval_secs=60 \
  --save_summaries_secs=60 \
  --log_every_n_steps=10 \
  --optimizer=rmsprop \
  --weight_decay=0.00004

不fine-tune把--checkpoint_path, --checkpoint_exclude_scopes和--trainable_scopes删掉。

fine-tune所有层把--checkpoint_exclude_scopes和--trainable_scopes删掉。

如果只使用CPU则加上--clone_on_cpu=True。

其它参数可删掉用默认值或自行修改。

使用自己的数据则需要修改models/slim/train_image_classifier.py:

from datasets import dataset_factory

修改为

from datasets import dataset_classification

dataset = dataset_factory.get_dataset(
  FLAGS.dataset_name, FLAGS.dataset_split_name, FLAGS.dataset_dir)

修改为

dataset = dataset_classification.get_dataset(
  FLAGS.dataset_dir, FLAGS.num_samples, FLAGS.num_classes, FLAGS.labels_to_names_path)

tf.app.flags.DEFINE_string(
  'dataset_dir', None, 'The directory where the dataset files are stored.')

后加入

tf.app.flags.DEFINE_integer(
  'num_samples', 3320, 'Number of samples.')

tf.app.flags.DEFINE_integer(
  'num_classes', 5, 'Number of classes.')

tf.app.flags.DEFINE_string(
  'labels_to_names_path', None, 'Label names file path.')

训练时执行以下命令即可:

cd $WORKSPACE/models/slim
python train_image_classifier.py \
  --train_dir=train_logs \
  --dataset_dir=../../data/train \
  --num_samples=3320 \
  --num_classes=5 \
  --labels_to_names_path=../../data/labels.txt \
  --model_name=inception_resnet_v2 \
  --checkpoint_path=../../checkpoints/inception_resnet_v2_2016_08_30.ckpt \
  --checkpoint_exclude_scopes=InceptionResnetV2/Logits,InceptionResnetV2/AuxLogits \
  --trainable_scopes=InceptionResnetV2/Logits,InceptionResnetV2/AuxLogits

可视化log

可一边训练一边可视化训练的log,可看到Loss趋势。

tensorboard --logdir train_logs/

验证

官方提供了验证脚本。

python eval_image_classifier.py \
  --checkpoint_path=train_logs \
  --eval_dir=eval_logs \
  --dataset_name=flowers \
  --dataset_split_name=validation \
  --dataset_dir=../../data/flowers \
  --model_name=inception_resnet_v2

同样,如果是使用自己的数据集,则需要修改models/slim/eval_image_classifier.py:

from datasets import dataset_factory

修改为

from datasets import dataset_classification

dataset = dataset_factory.get_dataset(
  FLAGS.dataset_name, FLAGS.dataset_split_name, FLAGS.dataset_dir)

修改为

dataset = dataset_classification.get_dataset(
  FLAGS.dataset_dir, FLAGS.num_samples, FLAGS.num_classes, FLAGS.labels_to_names_path)

tf.app.flags.DEFINE_string(
  'dataset_dir', None, 'The directory where the dataset files are stored.')

后加入

tf.app.flags.DEFINE_integer(
  'num_samples', 350, 'Number of samples.')

tf.app.flags.DEFINE_integer(
  'num_classes', 5, 'Number of classes.')

tf.app.flags.DEFINE_string(
  'labels_to_names_path', None, 'Label names file path.')

验证时执行以下命令即可:

python eval_image_classifier.py \
  --checkpoint_path=train_logs \
  --eval_dir=eval_logs \
  --dataset_dir=../../data/val \
  --num_samples=350 \
  --num_classes=5 \
  --model_name=inception_resnet_v2

可以一边训练一边验证,,注意使用其它的GPU或合理分配显存。

同样也可以可视化log,如果已经在可视化训练的log则建议使用其它端口,如:

tensorboard --logdir eval_logs/ --port 6007

测试

参考models/slim/eval_image_classifier.py,可编写读取图片用模型进行推导的脚本models/slim/test_image_classifier.py

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import math
import tensorflow as tf

from nets import nets_factory
from preprocessing import preprocessing_factory

slim = tf.contrib.slim

tf.app.flags.DEFINE_string(
  'master', '', 'The address of the TensorFlow master to use.')

tf.app.flags.DEFINE_string(
  'checkpoint_path', '/tmp/tfmodel/',
  'The directory where the model was written to or an absolute path to a '
  'checkpoint file.')

tf.app.flags.DEFINE_string(
  'test_path', '', 'Test image path.')

tf.app.flags.DEFINE_integer(
  'num_classes', 5, 'Number of classes.')

tf.app.flags.DEFINE_integer(
  'labels_offset', 0,
  'An offset for the labels in the dataset. This flag is primarily used to '
  'evaluate the VGG and ResNet architectures which do not use a background '
  'class for the ImageNet dataset.')

tf.app.flags.DEFINE_string(
  'model_name', 'inception_v3', 'The name of the architecture to evaluate.')

tf.app.flags.DEFINE_string(
  'preprocessing_name', None, 'The name of the preprocessing to use. If left '
  'as `None`, then the model_name flag is used.')

tf.app.flags.DEFINE_integer(
  'test_image_size', None, 'Eval image size')

FLAGS = tf.app.flags.FLAGS


def main(_):
  if not FLAGS.test_list:
    raise ValueError('You must supply the test list with --test_list')

  tf.logging.set_verbosity(tf.logging.INFO)
  with tf.Graph().as_default():
    tf_global_step = slim.get_or_create_global_step()

    ####################
    # Select the model #
    ####################
    network_fn = nets_factory.get_network_fn(
      FLAGS.model_name,
      num_classes=(FLAGS.num_classes - FLAGS.labels_offset),
      is_training=False)

    #####################################
    # Select the preprocessing function #
    #####################################
    preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
    image_preprocessing_fn = preprocessing_factory.get_preprocessing(
      preprocessing_name,
      is_training=False)

    test_image_size = FLAGS.test_image_size or network_fn.default_image_size

    if tf.gfile.IsDirectory(FLAGS.checkpoint_path):
      checkpoint_path = tf.train.latest_checkpoint(FLAGS.checkpoint_path)
    else:
      checkpoint_path = FLAGS.checkpoint_path

    tf.Graph().as_default()
    with tf.Session() as sess:
      image = open(FLAGS.test_path, 'rb').read()
      image = tf.image.decode_jpeg(image, channels=3)
      processed_image = image_preprocessing_fn(image, test_image_size, test_image_size)
      processed_images = tf.expand_dims(processed_image, 0)
      logits, _ = network_fn(processed_images)
      predictions = tf.argmax(logits, 1)
      saver = tf.train.Saver()
      saver.restore(sess, checkpoint_path)
      np_image, network_input, predictions = sess.run([image, processed_image, predictions])
      print('{} {}'.format(FLAGS.test_path, predictions[0]))

if __name__ == '__main__':
  tf.app.run()

测试时执行以下命令即可:

python test_image_classifier.py \
  --checkpoint_path=train_logs/ \
  --test_path=../../data/flower_photos/tulips/6948239566_0ac0a124ee_n.jpg \
  --num_classes=5 \
  --model_name=inception_resnet_v2

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
浅谈pyhton学习中出现的各种问题(新手必看)
May 17 Python
django模型层(model)进行建表、查询与删除的基础教程
Nov 21 Python
Python爬虫框架scrapy实现downloader_middleware设置proxy代理功能示例
Aug 04 Python
Pycharm连接远程服务器并实现远程调试的实现
Aug 02 Python
如何运行带参数的python脚本
Nov 15 Python
postman和python mock测试过程图解
Feb 22 Python
python实现打砖块游戏
Feb 25 Python
解决django框架model中外键不落实到数据库问题
May 20 Python
python 监控logcat关键字功能
Sep 04 Python
Django执行源生mysql语句实现过程解析
Nov 12 Python
使用豆瓣源来安装python中的第三方库方法
Jan 26 Python
scrapy-splash简单使用详解
Feb 21 Python
Pytorch之view及view_as使用详解
Dec 31 #Python
window环境pip切换国内源(pip安装异常缓慢的问题)
Dec 31 #Python
如何基于Python创建目录文件夹
Dec 31 #Python
Pytorch之contiguous的用法
Dec 31 #Python
python实现将json多行数据传入到mysql中使用
Dec 31 #Python
Pytorch之Variable的用法
Dec 31 #Python
Pytorch 多块GPU的使用详解
Dec 31 #Python
You might like
在MongoDB中模拟Auto Increment的php代码
2011/03/06 PHP
使用PHP实现蜘蛛访问日志统计
2013/07/05 PHP
php基于socket实现SMTP发送邮件的方法
2015/03/05 PHP
php求一个网段开始与结束IP地址的方法
2015/07/09 PHP
ThinkPHP进程计数类Process用法实例详解
2015/09/25 PHP
thinkPHP中create方法与令牌验证实例浅析
2015/12/08 PHP
PHP封装的多文件上传类实例与用法详解
2017/02/07 PHP
PHP有序表查找之二分查找(折半查找)算法示例
2018/02/09 PHP
简单实用的PHP文本缓存类实例
2019/03/22 PHP
Yii框架自定义数据库操作组件示例
2019/11/11 PHP
关于juqery radio写法的兼容性问题(新老版本jquery)
2010/06/14 Javascript
javascript 学习笔记(六)浏览器类型及版本信息检测代码
2011/04/08 Javascript
把jQuery的类、插件封装成seajs的模块的方法
2014/03/12 Javascript
JQuery实现表格动态增加行并对新行添加事件
2014/07/30 Javascript
AngularJS语法详解(续)
2015/01/23 Javascript
解决JS组件bootstrap table分页实现过程中遇到的问题
2016/04/21 Javascript
JS iFrame加载慢怎么解决
2016/05/13 Javascript
SWFUpload多文件上传及文件个数限制的方法
2016/05/31 Javascript
nodejs+mongodb aggregate级联查询操作示例
2018/03/17 NodeJs
超好用的jQuery分页插件jpaginate用法示例【附源码下载】
2018/12/06 jQuery
Vue项目中ESlint规范示例代码
2019/07/04 Javascript
在Python中使用PIL模块对图片进行高斯模糊处理的教程
2015/05/05 Python
在Python中使用sort()方法进行排序的简单教程
2015/05/21 Python
Pythony运维入门之Socket网络编程详解
2019/04/15 Python
在Python中使用MySQL--PyMySQL的基本使用方法
2019/11/19 Python
如何在django中运行scrapy框架
2020/04/22 Python
pycharm实现print输出保存到txt文件
2020/06/01 Python
python输出国际象棋棋盘的实例分享
2020/11/26 Python
python 基于selenium实现鼠标拖拽功能
2020/12/24 Python
CSS3实现圆角、阴影、透明效果并兼容各大浏览器
2014/08/08 HTML / CSS
简历的个人自我评价范文
2014/01/03 职场文书
专业技术职务聘任书
2014/03/29 职场文书
投标单位介绍信
2015/05/05 职场文书
MySQL创建表操作命令分享
2022/03/25 MySQL
如何用六步教会你使用python爬虫爬取数据
2022/04/06 Python
Nginx限流和黑名单配置
2022/05/20 Servers