详解Python二维数组与三维数组切片的方法


Posted in Python onJuly 18, 2019

如果对象是二维数组,则切片应当是x[:]的形式,里面有一个冒号,冒号之前和之后分别表示对象的第0个维度和第1个维度;

如果对象是三维数组,则切片应当是x[::],里面有两个冒号,分割出三个间隔,三个间隔的前、中和后分别表示对象的第0、1、2个维度。

x[n,:]、x[:,n]、x[m:n,:]、x[:,m:n]

上面的中括号中(m:n)应当看成一个整体,除了(m:n)之外的冒号就是用来表明在哪个维度上操作的。

对于二维数组,在冒号前面的(n,)意味着对二维数组的第0个维度上的第n号元素操作,在冒号后面的(,n)意味着对二维数组的第1个维度上的第n号元素进行操作。如果n替换成(m:n)则表示对第m号到第n-1号元素操作。

举例:

import numpy as np

a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], [17, 18, 19, 20]])
print(a.shape)
print(a[0, :], a[0, :].shape)
print(a[1, :], a[1, :].shape)
print(a[-1, :], a[-1, :].shape)
print(a[0:2, :], a[0:2, :].shape)
print(a[:, 0], a[:, 0].shape)
print(a[:, 1], a[:, 1].shape)
print(a[:, -1], a[:, -1].shape)
print(a[:, 0:2], a[:, 0:2].shape)

 运行结果如下:

(5, 4)
[1 2 3 4] (4,)
[5 6 7 8] (4,)
[17 18 19 20] (4,)
[[1 2 3 4]
 [5 6 7 8]] (2, 4)
[ 1 5 9 13 17] (5,)
[ 2 6 10 14 18] (5,)
[ 4 8 12 16 20] (5,)
[[ 1 2]
 [ 5 6]
 [ 9 10]
 [13 14]
 [17 18]] (5, 2)

Process finished with exit code 0

上例中,a是shape=(5,4)的数组。第0个维度上有5个元素,第1个维度上有4个元素(元素不一定是单个值, 也可能是数组,这里的元素的叫法是相对于某个维度而言的)。

  • a[0, :]、a[1, :]、a[-1, :]分别提取了a的第0个维度上的第0、1和-1个元素,每个元素都是一个含有4个元素的数组。
  • a[0:2, :]提取了a的第0个维度上的第0和1两个元素,两个元素都是一个含有4个元素的数组,共同组成一个二维数组。
  • a[:, 0]、a[:, 1]、a[:, -1]分别提取了a的第1个维度上的0、1和-1个元素,每个元素都是单个元素值。
  • a[:, 0:2]提取了a的第1个维度上的第0和1两个元素,两个元素都是单个元素值,共同组成一个二维数组。

x[n,::]、x[:,n:]、x[::,n]、x[:,:,n]、x[m:n,::]、x[:,m:n:]、x[::,m:n]、x[:,:,m:n]

上面的中括号中(m:n)应当看成一个整体,除了(m:n)之外的两个冒号就是用来表明在哪个维度上操作的。

对于三维数组,在双冒号的最前面的(n,)意味着对三维数组的第0个维度上的第n号元素操作,在双冒号的中间的(,n)意味着对三维数组的第1个维度上的第n号元素进行操作,在双冒号的后面的(,n)意味着对三维数组的第2个维度上的第n号元素进行操作。如果n替换成(m:n)则表示对第m号到第n-1号元素操作。

举例:

import numpy as np

b = np.array([[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]],
       [[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]],
       [[25, 26, 27, 28], [29, 30, 31, 32], [33, 34, 35, 36]],
       ])

print(b.shape)
print("b[0, ::],b[1, ::],b[-1, ::],b[0:2, ::]")
print(b[0, ::], b[0, ::].shape)
print(b[1, ::], b[1, ::].shape)
print(b[-1, ::], b[-1, ::].shape)
print(b[0:2, ::], b[0:2, ::].shape)
print("b[:, 0:],b[:, 1:],b[:, -1:],b[:, 0:2:]")
print(b[:, 0:], b[:, 0:].shape)
print(b[:, 1:], b[:, 1:].shape)
print(b[:, -1:], b[:, -1:].shape)
print(b[:, 0:2:], b[:, 0:2:].shape)
print("b[::, 0],b[::, 1],b[::, -1],b[::, 0:2:]")
print(b[::, 0], b[::, 0].shape)
print(b[::, 1], b[::, 1].shape)
print(b[::, -1], b[::, -1].shape)
print(b[::, 0:2:], b[::, 0:2].shape)
print("b[:,:, 0],b[:,:, 1],b[:,:, -1],b[:,:, 0:2:]")
print(b[:, :, 0], b[:, :, 0].shape)
print(b[:, :, 1], b[:, :, 1].shape)
print(b[:, :, -1], b[:, :, -1].shape)
print(b[:, :, 0:2:], b[:, :, 0:2].shape)

运行结果如下:

(3, 3, 4)
b[0, ::],b[1, ::],b[-1, ::],b[0:2, ::]
[[ 1 2 3 4]
 [ 5 6 7 8]
 [ 9 10 11 12]] (3, 4)
[[13 14 15 16]
 [17 18 19 20]
 [21 22 23 24]] (3, 4)
[[25 26 27 28]
 [29 30 31 32]
 [33 34 35 36]] (3, 4)
[[[ 1 2 3 4]
 [ 5 6 7 8]
 [ 9 10 11 12]]

 [[13 14 15 16]
 [17 18 19 20]
 [21 22 23 24]]] (2, 3, 4)
b[:, 0:],b[:, 1:],b[:, -1:],b[:, 0:2:]
[[[ 1 2 3 4]
 [ 5 6 7 8]
 [ 9 10 11 12]]

 [[13 14 15 16]
 [17 18 19 20]
 [21 22 23 24]]

 [[25 26 27 28]
 [29 30 31 32]
 [33 34 35 36]]] (3, 3, 4)
[[[ 5 6 7 8]
 [ 9 10 11 12]]

 [[17 18 19 20]
 [21 22 23 24]]

 [[29 30 31 32]
 [33 34 35 36]]] (3, 2, 4)
[[[ 9 10 11 12]]

 [[21 22 23 24]]

 [[33 34 35 36]]] (3, 1, 4)
[[[ 1 2 3 4]
 [ 5 6 7 8]]

 [[13 14 15 16]
 [17 18 19 20]]

 [[25 26 27 28]
 [29 30 31 32]]] (3, 2, 4)
b[::, 0],b[::, 1],b[::, -1],b[::, 0:2:]
[[ 1 2 3 4]
 [13 14 15 16]
 [25 26 27 28]] (3, 4)
[[ 5 6 7 8]
 [17 18 19 20]
 [29 30 31 32]] (3, 4)
[[ 9 10 11 12]
 [21 22 23 24]
 [33 34 35 36]] (3, 4)
[[[ 1 2 3 4]
 [ 5 6 7 8]]

 [[13 14 15 16]
 [17 18 19 20]]

 [[25 26 27 28]
 [29 30 31 32]]] (3, 2, 4)
b[:,:, 0],b[:,:, 1],b[:,:, -1],b[:,:, 0:2:]
[[ 1 5 9]
 [13 17 21]
 [25 29 33]] (3, 3)
[[ 2 6 10]
 [14 18 22]
 [26 30 34]] (3, 3)
[[ 4 8 12]
 [16 20 24]
 [28 32 36]] (3, 3)
[[[ 1 2]
 [ 5 6]
 [ 9 10]]

 [[13 14]
 [17 18]
 [21 22]]

 [[25 26]
 [29 30]
 [33 34]]] (3, 3, 2)

Process finished with exit code 0

上例中,b是shape=(3,3,4)的数组。第0个维度上有3个元素,第1个维度上有3个元素,第2个维度上有4个元素(元素不一定是单个值, 也可能是数组,这里的元素的叫法是相对于某个维度而言的)。

  • b[0, ::]、b[1, ::]、b[-1, ::]分别提取了b的第0个维度上的第0、1和-1个元素,每个元素都是一个二维数组。
  • b[0:2, ::]提取了b的第0个维度上的第0和1两个元素,两个元素都是一个二维数组,共同组成一个三维数组。
  • b[:, 0:]、b[:, 1:]、b[:, -1:]分别提取了b的全部元素(都是由4个元素的单个数组)、b的第1个维度上除第0号外的所有元素(都是由4个元素的单个数组)、b的第1个维度上的所有最后一个位置上的元素(都是由4个元素的单个数组)。
  • b[:, 0:2:]提取了b的第1个维度上的第0和1两个元素,两个元素都是一个有4个元素的数组,共同组成一个三维数组。
  • b[::, 0]、b[::, 1]、b[::, -1]分别提取了b的第2个维度上的0、1和-1个元素(这里的元素就是单个有4个元素的数组),每个元素都是有4个元素的数组。
  • b[::, 0:2]提取了b的第2个维度上的第0和1两个元素(这里的元素就是单个有4个元素的数组),两个元素都是有4个元素的数组。
  • b[:,:, 0]、b[:,:, 1]、b[:,:, -1]分别提取了b的第2个维度的所有元素(即有4个元素的数组)中的第0、1和-1个元素值,每个元素都是单个元素值。
  • b[:,:, 0:2]提取了b的第2个维度的所有元素(即有4个元素的数组)中的第0和1两个元素值,两个元素都是单个元素值。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
数据挖掘之Apriori算法详解和Python实现代码分享
Nov 07 Python
Python的装饰器用法学习笔记
Jun 24 Python
python 中random模块的常用方法总结
Jul 08 Python
高效使用Python字典的清单
Apr 04 Python
Python numpy中矩阵的基本用法汇总
Feb 12 Python
Python替换月份为英文缩写的实现方法
Jul 15 Python
pytorch 实现模型不同层设置不同的学习率方式
Jan 06 Python
Python使用进程Process模块管理资源
Mar 05 Python
Python Json数据文件操作原理解析
May 09 Python
浅谈TensorFlow中读取图像数据的三种方式
Jun 30 Python
OpenCV 使用imread()函数读取图片的六种正确姿势
Jul 09 Python
OpenCV3.3+Python3.6实现图片高斯模糊
May 18 Python
Django框架视图介绍与使用详解
Jul 18 #Python
python3 中的字符串(单引号、双引号、三引号)以及字符串与数字的运算
Jul 18 #Python
使用django实现一个代码发布系统
Jul 18 #Python
python 将字符串中的数字相加求和的实现
Jul 18 #Python
TensorFlow实现简单的CNN的方法
Jul 18 #Python
windows上安装python3教程以及环境变量配置详解
Jul 18 #Python
Django 开发环境配置过程详解
Jul 18 #Python
You might like
Session保存到数据库的php类分享
2011/10/24 PHP
thinkphp5.1框架模板赋值与变量输出示例
2020/05/25 PHP
showModalDialog 和 showModelessDialog
2007/01/22 Javascript
javascript for循环从入门到偏门(效率优化+奇特用法)
2012/08/01 Javascript
修改file按钮的默认样式实现代码
2013/04/23 Javascript
gridpanel动态加载数据的实例代码
2013/07/18 Javascript
js密码强度实时检测代码
2016/03/02 Javascript
js实现上传图片及时预览
2016/05/07 Javascript
jQuery 获取跨域XML(RSS)数据的相关总结分析
2016/05/18 Javascript
jQuery文件上传控件 Uploadify 详解
2016/06/20 Javascript
jquery 实现回车登录详解及实例代码
2016/10/23 Javascript
jquery+css3问卷答题卡翻页动画效果示例
2016/10/26 Javascript
浅谈js在html中的加载执行顺序,多个jquery ready执行顺序
2016/11/26 Javascript
关于Vue源码vm.$watch()内部原理详解
2019/04/26 Javascript
JavaScript中this的全面解析及常见实例
2019/05/14 Javascript
Antd-vue Table组件添加Click事件,实现点击某行数据教程
2020/11/17 Javascript
基于vue的video播放器的实现示例
2021/02/19 Vue.js
python使用webbrowser浏览指定url的方法
2015/04/04 Python
Python使用functools实现注解同步方法
2018/02/06 Python
Windows系统下PhantomJS的安装和基本用法
2018/10/21 Python
解决使用PyCharm时无法启动控制台的问题
2019/01/19 Python
我用Python抓取了7000 多本电子书案例详解
2019/03/25 Python
python try except返回异常的信息字符串代码实例
2019/08/15 Python
Django ModelForm组件原理及用法详解
2020/10/12 Python
基于Python爬取股票数据过程详解
2020/10/21 Python
详解css position 5种不同的值的用法
2019/07/30 HTML / CSS
国际领先的学术出版商:Springer
2017/01/11 全球购物
得到Class的三个过程是什么
2012/08/10 面试题
主键(Primary Key)约束和唯一性(UNIQUE)约束的区别
2013/05/29 面试题
公务员综合考察材料
2014/02/01 职场文书
中学生期末评语
2014/02/03 职场文书
法学专业求职信
2014/07/15 职场文书
2014年禁毒工作总结
2014/11/24 职场文书
大学军训决心书
2015/02/05 职场文书
HTML5来实现本地文件读取和写入的实现方法
2021/05/25 HTML / CSS
Python实战之大鱼吃小鱼游戏的实现
2022/04/01 Python